Skip to main content

Advertisement

Log in

Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study aimed at relating the variability of Ni biogeochemistry along the ultramafic toposequence to pedogenesis and soil mineralogy. Hypereutric Cambisols dominate upslope; Cambic Vertisols and Fluvic Cambisols occur downslope. The soil mineralogy showed abundance of primary serpentine all over the sequence. It is predominant upslope but secondary smectites dominate in the Vertisols. Free Fe-oxides are abundant in all soils but slightly more abundant in the upslope soils. Whereas serpentines hold Ni in a similar and restricted range in every soil (approx. 0.3 %), Ni contents in smectites may vary a lot and Mg-rich and Al-poor smectites in the Vertisol could hold up to 4.9 % Ni. Ni was probably adsorbed onto amorphous Fe-oxides and was also exchangeable in secondary smectites. High availability of Ni in soils was confirmed by DTPA extractions. However, it varied significantly along the toposequence, being higher in upslope soils, where Ni-bearing amorphous Fe-oxides were abundant and total organic carbon higher and sensibly lower downslope on the Vertisols: NiDTPA varied from 285 mg kg−1 in the surface of soil I (upslope) to 95.9 mg kg−1 in the surface of Fluvic Cambisols. Concentration of Ni in Alyssum murale shoots varied from 0.7 % (Hypereutric Cambisols) to 1.4 % (Hypereutric Vertisol). Amazingly, Ni uptake by A. murale was not correlated to NiDTPA, suggesting the existence of specific edaphic conditions that affect the ecophysiology of A. murale upslope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AFNOR. (2004). Evaluation de la qualité des Sols (Vol. 1 & 2). France: AFNOR, Saint-Denis. 461pp & 486 pp.

    Google Scholar 

  • Alexander, E. B. (2004). Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains. California. International Geology Review, 46, 754–764.

    Article  Google Scholar 

  • Antic-Mladenovic, S., Rinklebe, J., Frohne, T., Stärk, H.-J., Wennrich, R., Tomic, Z., et al. (2011). Impact of controlled redox conditions on nickel in a serpentine soil. Journal Soils and Sediments, 11, 406–415.

    Article  CAS  Google Scholar 

  • Bani, A., Echevarria, G., Sulçe, S., Morel, J. L., & Mullai, A. (2007). In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant and Soil, 293, 79–89.

    Article  CAS  Google Scholar 

  • Bani, A., Echevarria, G., Mullaj, A., Reeves, R., Morel, J. L., & Sulçe, S. (2009). Ni hyperaccumulation by Brassicaceae in serpentine soils of Albania and NW Greece. Northeastern Naturalist, 16, 385–404.

    Article  Google Scholar 

  • Bani A., Echevarria G., Sulçe S., Morel J.L. (2014) Improving the agronomy of Alyssum murale for extensive phytomining: A five-year field study. Int J Phytoremediation.

  • Becquer, T., Quantin, C., Rotte-Capet, S., Ghanbaja, J., Mustin, C., & Herbillon, A. J. (2006). Sources of trace metals in ferralsols in New Caledonia. European Journal of Soil Science, 57, 200–213.

    Article  CAS  Google Scholar 

  • Bonifacio, E., & Barberis, E. (1999). Phosphorus dynamics during pedogenesis on serpentinite. Soil Science, 164, 960–968.

    Article  CAS  Google Scholar 

  • Bonifacio, E., Zanini, E., Boero, V., & Franchini-Angela, M. (1997). Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma, 75, 33–51.

    Article  CAS  Google Scholar 

  • Brooks, R.R. (1987). Serpentine and Its Vegetation, Dudley, T.R. (Ed.), Discorides, Portland, OR. 454 pp.

  • Caillaud, J., Proust, D., Righi, D., & Martin, F. (2004). Fe-rich clays in a weathering profile developed from serpentinite. Clays and Clay Minerals, 52, 779–791.

    Article  CAS  Google Scholar 

  • Caillaud, J., Proust, D., Philippe, S., Fontaine, C., & Fialin, M. (2009). Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma, 149, 199–208.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429.

    Google Scholar 

  • Chardot, V., Massoura, S. T., Echevarria, G., Reeves, R. D., & Morel, J. L. (2005). Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. International Journal of Phytoremediation, 7, 323–335.

    Article  CAS  Google Scholar 

  • Chardot, V., Echevarria, G., Gury, M., Massoura, S., & Morel, J. L. (2007). Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant and Soil, 293, 7–21.

    Article  CAS  Google Scholar 

  • Cheng, C. H., Jien, S. H., Iizuka, Y., Tsai, H., Chang, Y. H., & Hseu, Z. Y. (2011). Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Science Society of America Journal, 75, 659–668.

    Article  CAS  Google Scholar 

  • Coleman, R. G., & Jove, C. (1991). Geological origin of serpentinites. In A. J. M. Baker (Ed.), The vegetation of ultramafic (serpentine) soils: proceedings of the first international conference on serpentine ecology (pp. 1–17). Andover, Hampshire, UK: Intercept.

    Google Scholar 

  • D’Amico, M. E., & Previtali, F. (2012). Edaphic influences of ophiolitic substrates on vegetation in the Western Italian Alps. Plant and Soil. doi:10.1007/s11104-011-0932-6.

    Google Scholar 

  • Dilek, Y., & Furnes, H. (2009). Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113, 1–20.

    Article  CAS  Google Scholar 

  • Ece, O. I., Coban, F., Gungor, N., & Suner, F. (1999). Clay mineralogy and occurrence of ferrian smectites between serpentinite saprolites and basalts in biga peninsula, northwest turkey. Clays and Clay Minerals, 47, 241–251.

    Article  CAS  Google Scholar 

  • Echevarria, G., Morel, J. L., Fardeau, J. C., & Leclerc-Cessac, E. (1998). Assessment of phytoavailability of nickel in soils. Journal of Environmental Quality, 27, 1064–1070.

    Google Scholar 

  • Echevarria, G., Massoura, S. T., Sterckeman, T., Becquer, T., Schwartz, C., & Morel, J. L. (2006). Assessment and control of the bioavailability of nickel in soils. Environmental Toxicology and Chemistry, 25 (3), 643–651.

    Google Scholar 

  • Garnier, J., Quantin, C., Echevarria, G., & Becquer, T. (2009). Assessing chromate availability in tropical ultramafic soils using isotopic exchange kinetics. Journal Soils and Sediments, 9, 468–475.

    Article  CAS  Google Scholar 

  • Gjoka, F., Felix-Henningsen, P., Wegener, H.-R., Salillari, I., & Beqiraj, A. (2011). Heavy metals in soils from Tirana (Albania). Environmental Monitoring and Assessment, 172, 517–527.

    Article  CAS  Google Scholar 

  • Istok, J. D., & Harward, M. D. (1982). Influence of soil moisture on smectite formation in soils derived from serpentinite. Soil Science Society of America Journal, 46, 1106–1108.

    Article  Google Scholar 

  • IUSS Working Group WRB. (2006). World reference base for soil resources, world soil resources reports (103). Rome: FAO.

    Google Scholar 

  • Jaffré, T., Brooks, R. R., Lee, J., & Reeves, R. D. (1976). Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science, 193, 579–580.

    Article  Google Scholar 

  • Kierczak, J., Néel, C., Bril, H., & Puziewicz, J. (2007). Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142, 165–177.

    Article  CAS  Google Scholar 

  • Lee, B. D., Graham, R. C., Laurent, T. E., Amrhein, C., & Creasy, R. M. (2001). Spatial distributions of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Science Society of America Journal, 65, 1183–1196.

    Article  CAS  Google Scholar 

  • Lee, B. D., Sears, S. K., Graham, R. C., Amrhein, C., & Vali, H. (2003). Secondary mineral genesis from chlorite and serpentine in an ultramafic soil toposequence. Soil Science Society of America Journal, 67, 1309–1317.

    Article  CAS  Google Scholar 

  • Lee, B. D., Graham, R. C., Laurent, T. E., & Amrhein, C. (2004). Pedogenesis in a wetland meadow and surrounding serpentinitic landslide terrain, northern California, USA. Geoderma, 118 (3–4), 303–320.

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Manika, K. (1994). Pétrologie du massif ophiolitique de Shebenik (Albanie). PhD Dissertation, Université de Paris-Sud Orsay (in French).

  • Massoura, S. T., Echevarria, G., Leclerc-Cessac, E., & Morel, J. L. (2004). Response of excluder, indicator and hyperaccumulator plants to nickel availability in soils. Aust. J. Soil Research, 42, 933–938.

    Article  CAS  Google Scholar 

  • Massoura, S. T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., & Morel, J. L. (2006). Nickel bearing phases and availability in natural and anthropogenic soils. Geoderma, 136, 28–37.

    Article  CAS  Google Scholar 

  • McCahon, T. J., & Munn, L. C. (1991). Soils developed in late Pleistocene till, medicine Bow mountains. Wyoming Soil Science, 152, 377–388.

    Article  CAS  Google Scholar 

  • McKeague, J. J., & Day, J. A. (1966). Dithionite and oxalate extractable Fe and Al as aids in differentiating different classes of soils. Canadian Journal of Soil Science, 46, 13–22.

    Article  CAS  Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxides removal from soils and clays by dithionite-citrate systems buffered with sodium bicarbonate. In A. Swineford (Ed.), Proceedings of the 7th Nat (pp. 317–342). Elmsdorf, NY: Conf. Clay Minerals. Pergamon Press.

    Google Scholar 

  • O’Hanley, D. S. (1996). Serpentinites: records of tectonic and petrological history. In Oxford monographs on geology and geophysics. New York: Oxford University Press. 277 pp.

    Google Scholar 

  • Proctor, J., & Woodell, S. R. J. (1975). The ecology of serpentine soils. Advances in Ecological Research, 9, 255–365.

    Article  Google Scholar 

  • Raous, S., Echevarria, G., Sterckeman, T., Hanna, K., Thomas, F., Martins, E. S., et al. (2013). Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma, 192, 111–119.

    Article  CAS  Google Scholar 

  • Tang, Y. T., Deng, T. H. B., Wu, Q. H., Qiu, R. L., Wei, Z. B., Guo, X. F., et al. (2012). Designing cropping systems adapted to metal contaminated sites: a review. Pedosphere, 22, 470–488.

    Article  CAS  Google Scholar 

  • World Reference Base for soil resources (2006) World Soil Resources Reports No. 103. FAO, Rome.

  • Whittaker, R. H. (1954). The ecology of serpentine soils: a symposium. I. Introduction. Ecological, 35, 258–259.

    Google Scholar 

  • Zdruli, P. (1997). Benchmark Soils of Albania: Resource Assessment for Sustainable Land Use. PhD. thesis. Published by the USDA Natural Resources Conservation Service (NRCS), Washington DC and the International Fertilizer Development Center (IFDC), Muscle Shoals, AL. 2 Volumes. pp. 293.

Download references

Acknowledgments

This work was supported by the French Embassy in Tirana who provided a grant to Prof. Aida Bani for her PhD and by the French National Research Agency through the national “Investissements d’avenir” programme, reference ANR-10-LABX-21 (LABEX RESSOURCES21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Echevarria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bani, A., Echevarria, G., Montargès-Pelletier, E. et al. Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ Monit Assess 186, 4431–4442 (2014). https://doi.org/10.1007/s10661-014-3709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3709-6

Keywords

Navigation