Skip to main content

Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production

Abstract

The implementation of good agricultural practices (GAP) from irrigation water to the tomato packaging process enhances the safety of fresh produce and its value throughout the food chain. The aim of the present study was to show that fresh produce farms that apply and enforce GAP could reduce the presence of Salmonella in finished produce. Samples were collected biweekly from six packing houses from the central region of Sinaloa, México, for the isolation of Salmonella spp by the ISO 6579:2002 method, and the isolated strains were serotyped and genotyped by the Kauffmman-White scheme and pulsed field gel electrophoresis (PFGE), respectively. Salmonella strains were detected in 13 (36.1 %) irrigation water samples, while only two tomato samples were positive (5.5 %). Eight different serotypes were identified in irrigation water, and Salmonella Oranienburg (34 %) was the most prevalent; however, only Salmonella Agona and Salmonella Weltevreden were present on tomatoes. Salmonella Oranienburg was the most widely dispersed and variable serotype, with 10 different PFGE profiles. Salmonella Weltevreden was isolated from both types of samples, albeit with distinct genetic profiles, implying that the sources of contamination differ. These results confirm the utility of implementing good agricultural practices to reduce Salmonella contamination in irrigation water and the packaging process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Acedo-Félix, E., Núñez-Hernandez, Y., Pérez-Morales, R., Iñiguez-Palomares, C. M., & Castillón-Campaña, L. (2009). Caracterización polifásica de Salmonella spp Aislada de campos agrícolas de melón (Cucumis melo) y cilantro (Coriandrum sativum). Interciencia, 24(6), 419–423.

    Google Scholar 

  • Ahmed, W., Sawant, S., Huygens, F., Goonetilleke, A., & Gardner, T. (2009). Prevalence and occurrence of zoonotic bacterial pathogens in surface waters determined by quantitative PCR. Water Research, 43(19), 4918–4928.

    Article  CAS  Google Scholar 

  • Ashbolt, N. J. (2004). Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology, 198(1–3), 229–238.

    Article  CAS  Google Scholar 

  • Berger, C. N., Sodha, S. V., Shaw, R. K., Griffin, P. M., Pink, D., Hand, N., et al. (2010). Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environmental Microbiology, 12(9), 2385–2397.

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (CDC). (2004). The CDC PulseNet one-day, Standardized Laboratory Protocol for Molecular Subtyping of Escherichia coli O157:H7, non-typhoidal Salmonella serotypes, and Shigella sonnei by pulsed field gel electrophoresis. Retrieved from http://www.cdc.gov/pulsenet/protocols/ecoli_salmonella_shigella_protocols.pdf

  • Centers for Disease Control and Prevention (CDC). (2012). Multistate outbreak of Salmonella Braenderup infections associated with mangoes (final update). http://www.cdc.gov/salmonella/braenderup-08-12/index.html. Accessed 21 Oct 2012.

  • Chiu, C., & Ou, J. (1996). Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. Journal of Clinical Microbiology, 34(10), 2619–2622.

    CAS  Google Scholar 

  • Espinoza-Medina, I. E., Rodríguez-Leyva, F. J., Vargas-Arispuro, I., Islas-Osuna, M. A., Acedo-Félix, E., & Martínez-Téllez, M. A. (2006). PCR identification of Salmonella: potential contamination sources from production and postharvest handling of cantaloupes. Journal of Food Protection, 69(6), 1422–1425.

    CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). (2007). The agricultural trade domain covers detailed food and agriculture exports and imports. http://faostat.fao.org/desktopdefault.aspx?pageid=342&country=138&lang=es. Accessed 14 Aug 2012.

  • Gannon, V. P., Graham, T. A., Read, S., Ziebell, K., Muckle, A., Mori, J., et al. (2004). Bacterial pathogens in rural water supplies in Southern Alberta, Canada. Journal of Toxicology and Environmental Health, 67(20–22), 1643–1653.

    Article  CAS  Google Scholar 

  • Gaul, S. B., Wedel, S., Erdman, M. M., Harris, D. L., Harris, I., Ferris, K., et al. (2007). Identification of swine Salmonella serotypes using pulsed-field gel electrophoresis of conserved Xbal fragments. Journal of Clinical Microbiology, 45(2), 472–476.

    Article  CAS  Google Scholar 

  • Gorski, L., Parker, C. T., Liang, A., Cooley, M. B., Jay-Russell, M. T., Gordus, A. G., et al. (2011). Prevalence, distribution, and diversity of Salmonella enterica in a major produce region of California. Applied and Environmental Microbiology, 77(8), 2734–2748.

    Article  CAS  Google Scholar 

  • Greene, S. K., Daly, E. R., Talbot, E. A., Demma, L. J., Holzbauer, S., Patel, N. J., et al. (2008). Recurrent multistate outbreak of Salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiology and infection, 136(2), 157–165.

    Article  CAS  Google Scholar 

  • Haley, B. J., Cole, D. J., & Lipp, E. K. (2009). Distribution, diversity and seasonality of water-borne Salmonella in a rural watershed. Applied and Environmental Microbiology, 75(5), 1248–1255.

    Article  CAS  Google Scholar 

  • Hill, V. R., Polaczyk, A. M., Hahn, D., Narayanan, J., Cromeans, T., Roberts, J. M., et al. (2005). Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Applied and Environmental Microbiology, 71(11), 6878–6884.

    Article  CAS  Google Scholar 

  • International Organization for Standardization 6579. (ISO 6579, 2002). Microbiology of food and animal feeding stuffs horizontal method for the detection of Salmonella spp.

  • Jiménez, M., & Chaidez, C. (2011). Improving Salmonella determination in Sinaloa rivers with ultrafiltration and most probable number methods. Environmental Monitoring and Assessment, 184(7), 4271–4277.

    Article  Google Scholar 

  • Jiménez, M., Siller, J., Carrillo, A., & Chaidez, C. (2006). Bidireccional Salmonella typhimurium transfer between bare/glove hands and green bell pepper and its interruption. Internatinal Journal of Environmental Health Research, 17(4), 1–7.

    Google Scholar 

  • Jiménez, M., Martínez-Urtaza, J., & Chaidez, C. (2011). Geographical and temporal dissemination of salmonellae isolated from domestic animal hosts in the Culiacan Valley, Mexico. Microbial Ecology, 61(4), 811–820.

    Article  Google Scholar 

  • Knappett, P. S., Layton, A., McKay, L. D., Williams, D., Mailloux, B. J., & Huq, M. R. (2010). Efficacy of hollow-fiber ultrafiltration for microbial sampling in groundwater. Ground Water, 49(1), 53–65.

    Article  Google Scholar 

  • Lan, R., Reeves, P. R., & Octavia, S. (2009). Population structure, origins and evolution of major Salmonella enterica clones. Infection Genetic and Evolution, 9, 996–1005.

    Article  CAS  Google Scholar 

  • Levantesi, C., Bonadonna, L., Briancesco, R., Grohmann, E., Toze, S., & Tandoi, V. (2012). Salmonella in surface and drinking water: occurrence and water-mediated transmission. Food Research International, 45(2), 587–602.

    Article  Google Scholar 

  • López-Cuevas, O., León, F. J., Jiménez, E. M., & Chaidez, Q. C. (2009). Detección y resistencia a antibióticos de Escherichia coli y Salmonella en agua y suelo agrícola. Revista Fitotecnia Mexicana, 32(2), 119–126.

    Google Scholar 

  • Martinez-Urtaza, J., Saco, M., de Novoa, J., Perez-Piñeiro, P., Peiteado, J., & Lozano-Leon, A. (2004). Influence of environmental factors and human activity on the presence of Salmonella serovars in a marine environment. Applied and Environmental Microbiology, 70(4), 2089–2097.

    Article  CAS  Google Scholar 

  • Materon, L. A., Martinez-Garcia, M., & MacDonald, V. (2007). Identification of sources of microbial pathogens on cantaloupe rinds from pre-harvest to post-harvest operations. World Journal of Microbiology and Biotechnology, 23(9), 1281–1287.

    Article  Google Scholar 

  • Medini, D., Donati, C., Tettelin, H., Masignani, V., & Rappuoli, R. (2005). The microbial pan-genome. Current Opinion Genetics Development, 15(6), 589–594.

    Article  CAS  Google Scholar 

  • Melloul, A. A., Hassani, L., & Rafouk, L. (2001). Salmonella contamination of vegetables irrigated with untreated wastewater. World Journal of Microbiology and Biotechnology, 17, 207–209.

    Article  Google Scholar 

  • Olaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: a review. Food Microbiology, 32(1), 1–19.

    Article  CAS  Google Scholar 

  • Patchanee, P., Molla, B., White, N., Line, D. E., & Gebreyes, W. A. (2010). Tracking Salmonella contamination in various watersheds and phenotypic and genotypic diversity. Foodborne Pathogens and Disease, 7(9), 1113–1120.

    Article  CAS  Google Scholar 

  • Peskoller, C., Niessner, R., & Seidel, M. (2009). Cross-flow microfiltration system for rapid enrichment of bacteria in water. Analytical and Bioanalytical Chemistry, 393(1), 399–404.

    Article  CAS  Google Scholar 

  • Popoff, M. Y., Bockemuhl, J., & Gheesling, L. L. (2004). Supplement 2002 (no. 46) to the Kauffmann-White scheme. Research in Microbiology, 155(7), 568–570.

    Article  Google Scholar 

  • Prosser, J. I., Bohannan, B. J., Curtis, T. P., Ellis, R. J., Firestone, M. K., Freckleton, M. P., et al. (2007). The role of ecological theory microbial ecology. Nature Reviews. Microbiology, 5(5), 384–392.

    Article  CAS  Google Scholar 

  • Siller-Cepeda, J. H., Chaidez-Quiroz, C., Castro del Campo, N. (2009). The produce contamination problem: causes and solution. Chapter 13: Produce contamination issues in Mexico and Central America. New York: Elsevier. pp. 309–329.

  • Thurston, E. J., Watt, P., Down, S. E., Enriquez, R., Pepper, I. L., & Gerba, C. P. (2002). Detection of protozoan parasites and microsporidia in irrigation waters used for crop production. Journal of Food Protection, 65(2), 378–382.

    Google Scholar 

  • Warriner, K., Huber, A., Namvar, A., Fan, W., & Dunfield, K. (2009). Recent advances in the microbial safety of fresh fruits and vegetables. Advances in Food and Nutrition Research, 57, 155–208.

    Article  CAS  Google Scholar 

  • Wattiau, P., Boland, C., & Bertrand, S. (2011). Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Applied and Environmental Microbiology, 77(22), 7877–7885.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors profoundly thank Fundación Produce Sinaloa for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Castro-del Campo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Estrada-Acosta, M., Jiménez, M., Chaidez, C. et al. Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production. Environ Monit Assess 186, 4323–4330 (2014). https://doi.org/10.1007/s10661-014-3701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3701-1

Keywords

  • Salmonella
  • Microbial characterization
  • Irrigation water
  • Good agricultural practices
  • Tomato