Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 7, pp 4249–4259 | Cite as

Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses

  • Chiara Gambardella
  • Tina Mesarič
  • Tamara Milivojević
  • Kristina Sepčić
  • Lorenzo Gallus
  • Serena Carbone
  • Sara Ferrando
  • Marco Faimali
Article

Abstract

The aim was to investigate the toxicity of selected metal oxide nanoparticles (MO-NPs) on the brine shrimp Artemia salina, by evaluating mortality and behavioural and biochemical responses. Larvae were exposed to tin(IV) oxide (stannic oxide (SnO2)), cerium(IV) oxide (CeO2) and iron(II, III) oxide (Fe3O4) NPs for 48 h in seawater, with MO-NP suspensions from 0.01 to 1.0 mg/mL. Mortality and behavioural responses (swimming speed alteration) and enzymatic activities of cholinesterase, glutathione-S-transferase and catalase were evaluated. Although the MO-NPs did not induce any mortality of the larvae, they caused changes in behavioural and biochemical responses. Swimming speed significantly decreased in larvae exposed to CeO2 NPs. Cholinesterase and glutathione-S-transferase activities were significantly inhibited in larvae exposed to SnO2 NPs, whereas cholinesterase activity significantly increased after CeO2 NP and Fe3O4 NP exposure. Catalase activity significantly increased in larvae exposed to Fe3O4 NPs. In conclusion, swimming alteration and cholinesterase activity represent valid endpoints for MO-NP exposure, while glutathione-S-transferase and catalase activities appear to be NP-specific.

Keywords

Artemia salina Enzymes Mortality Nanoparticles Swimming alteration 

Notes

Acknowledgments

Chiara Gambardella would like to thank Prof Carla Falugi for her kind suggestions, and POSDRU/89/1.5/S/63663-Sectorial Operational Programme for Human Resources Development through the project “Transnational network for integrated management of postdoctoral research in Science Communication. Institutional framing (postdoctoral school) and scholarship programme (CommScie).” The Slovenian authors gratefully acknowledge the Slovenian Research Agency, and Tina Mesarič acknowledges the Slovene Human Resources Development and Scholarship Fund for financial support. The experiments comply with the current European laws of bioethics. Dr. Christopher Berrie is acknowledged for editing and appraisal of the manuscript.

Supplementary material

10661_2014_3695_MOESM1_ESM.pdf (502 kb)
ESM 1 (PDF 501 kb)

References

  1. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.CrossRefGoogle Scholar
  2. Alyuruk, H., Demir, G. K., & Cavas, L. (2013). A video tracking based improvement of acute toxicity test on Artemia salina. Marine and Freshwater Behaviour and Physiology. doi: 10.1080/10236244.2013.814224.Google Scholar
  3. Amiard-Triquet, C. (2009). Behavioral disturbances: the missing link between sub-organismal and supra-organismal responses to stress? Prospects based on aquatic research. Human and Ecological Risk Assessment, 15, 87–110.CrossRefGoogle Scholar
  4. Ates, M., Daniels, J., Arslan, Z., & Farah, O. I. (2013a). Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environmental Monitoring and Assessment, 185, 3339–3348.CrossRefGoogle Scholar
  5. Ates, M., Daniels, J., Arslan, Z., Farah, O. I., & Rivera, H. F. (2013b). Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environmental Science: Processes and Impacts, 15, 225.Google Scholar
  6. Barahona, M. V., & Sanchez-Fortun, S. (1999). Toxicity of carbamates to the brine shrimp Artemia salina and the effect of atropine, BW284c51, iso-OMPA and 2-PAM on carbaryl toxicity. Environmental Pollution, 104, 469–476.CrossRefGoogle Scholar
  7. Barsan, N., Schweizer-Berberich, M., & Gopel, W. (1999). Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report, Fresenius. Journal of Analytical Chemistry, 365, 287–304.CrossRefGoogle Scholar
  8. Baun, A., Hartmann, N. B., Grieger, K., & Kusk, K. O. (2008). Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology, 17, 387–395.CrossRefGoogle Scholar
  9. Buffet, P. E., Tankoua, O. F., Pan, J.-F., Berhanu, D., Herrenknecht, C., Poirier, L., et al. (2011). Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere, 84, 166–174.CrossRefGoogle Scholar
  10. Buzea, C., Blandino, P., & Robb, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, MR17–MR172.CrossRefGoogle Scholar
  11. Canesi, L., Fabbri, R., Gallo, G., Vallotto, D., Marcomini, A., & Pojana, G. (2010a). Biomarkers in Mytilus galloprovincialis exposed to suspension of selected nanoparticles (nanocarbon black, C60 fullerene, nano-TiO2, nano-SiO2). Aquatic Toxicology, 100, 168–177.CrossRefGoogle Scholar
  12. Canesi, L., Ciacci, C., Vallotto, D., Gallo, G., Marcomini, A., & Pojana, G. (2010b). In-vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquatic Toxicology, 96, 151–158.CrossRefGoogle Scholar
  13. Cornejo-Garrido, H., Kibanova, D., Nieto-Camacho, A., Guzmàn, J., Ramirez-Apan, T., Fernandez-Lomelin, P., et al. (2011). Oxidative stress, cytotoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions. Chemosphere, 84, 1329–1335.CrossRefGoogle Scholar
  14. Cornelis, G., Ryan, B., McLaughlin, M. J., Kirbi, J. K., Beak, D., & Chittleborough, D. (2011). Solubility and batch retention of CeO2 nanoparticles in soils. Environmental Science and Technology, 45, 2777–2782.CrossRefGoogle Scholar
  15. D’Agata, A., Fasulo, S., Dallas, L. J., Fisher, A. S., Maisano, M., Readman, J. W., et al. (2013). Enhanced toxicity of “bulk” titanium dioxide compared to “fresh” and “aged” nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology, 8, 549–558.CrossRefGoogle Scholar
  16. de Oliveira, P., Gomes, A. Q., Pacheco, T. R., de Almeida, V. V., Saldanha, C., & Calado, A. (2012). Cell-specific regulation of cholinesterase expression under inflammatory conditions. Clinical Hemorheology and Microcirculation, 51, 129–137.Google Scholar
  17. Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of cholinesterase activity. Biochemical Pharmacology, 7, 88–95.CrossRefGoogle Scholar
  18. EPA (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 5th ed. http://water.epa.gov/scitech/methods/cwa/wet/disk2_index.cfm. Accessed October 2002.
  19. Falugi, C., Rakonczay, Z., Thielecke, H., Guida, C., Aluigi, M.G. (2011). Cholinergic pesticides. In: Pesticides—the impacts of pesticides exposure, Agricultural and Biological Sciences. Ed. Stoytcheva M, ISBN: 978-953-307-531-0, Chapter 11: 221-242.Google Scholar
  20. Falugi, C., Aluigi, M. G., Chiantore, M. C., Privitera, D., Ramoino, P., Gatti, M. A., et al. (2012). Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Marine Environmental Research, 76, 114–121.CrossRefGoogle Scholar
  21. Falugi, C., & Aluigi, M. G. (2012). Early appearance and possible functions of non-neuromuscular cholinesterase activities. Frontiers in Molecular Neuroscience, 5, 54.CrossRefGoogle Scholar
  22. Gaiser, B. K., Biswas, A., Rosenkaranz, P., Jepson, M. A., Lead, J., Stone, V., et al. (2011). Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. Journal of Environmental Monitoring, 13, 1227.CrossRefGoogle Scholar
  23. Galloway, T., Lewis, C., Dolciotti, I., Johnston, B. D., Moger, J., & Regoli, F. (2010). Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environmental Pollution, 158, 1748–1755.CrossRefGoogle Scholar
  24. Gambardella, C., Aluigi, M. G., Ferrando, S., Gallus, L., Ramoino, P., Gatti, A. M., et al. (2013). Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. Aquatic Toxicology, 130(131), 77–85.CrossRefGoogle Scholar
  25. Gambardella, C., Gallus, L., Gatti, M., Faimali, M., Carbone, S., Antisari Vittori, L., Falugi, C., Ferrando, S. (2014). Toxicity and transfer of metal oxide nanoparticles from microalgae to sea urchin larvae. Chemistry and Ecology. doi: 10.1080/02757540.2013.873031.
  26. Garaventa, F., Gambardella, C., Di Fino, A., Pittore, M., & Faimali, M. (2010). Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for ecotoxicological surveys. Ecotoxicology, 19, 512–519.CrossRefGoogle Scholar
  27. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.Google Scholar
  28. Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine. New York: Oxford University Press.Google Scholar
  29. Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H., et al. (2008). Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. Journal of Physiology and Chemistry Part C, 12, 11336–11339.CrossRefGoogle Scholar
  30. Hund-Rinke, K., & Simon, M. (2006). Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research, 13, 225–232.CrossRefGoogle Scholar
  31. Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., & Miyasaka, T. (1997). Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science, 276, 1395–1397.CrossRefGoogle Scholar
  32. Jamnik, P., & Raspor, P. (2003). Stress response of yeast Candida intermedia to Cr(VI). Journal of Biochemical and Molecular Toxicology, 17, 316–323.CrossRefGoogle Scholar
  33. Jemec, A., Tišler, T., Drobne, D., Sepčić, K., Fournier, D., & Trebše, P. (2007). Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere, 68, 1408–1418.CrossRefGoogle Scholar
  34. Jemec, A., Drobne, D., Remškar, M., Sepčić, K., & Tišler, T. (2008a). Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environmental Toxicology and Chemistry, 9, 1904–1914.CrossRefGoogle Scholar
  35. Jemec, A., Tišler, T., Drobne, D., Sepčić, K., Jamnik, P., & Roš, M. (2008b). Biochemical biomarkers in chronically metal-stressed daphnids. Comparative Biochemistry and Physiology Part C, 147, 61–68.Google Scholar
  36. Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., et al. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27, 1825–1851.CrossRefGoogle Scholar
  37. Koehler, A., Marx, U., Broeg, K., Bahns, S., & Bressling, J. (2008). Effects of nanoparticles in Mytilus edulis gills and hepatopancreas—a new threat to marine life? Marine Environmental Research, 66, 12–14.CrossRefGoogle Scholar
  38. Kokkali, V., Katramados, I., & Newman, J. D. (2011). Monitoring the effect of metal ions on the mobility of Artemia salina nauplii. Biosensors, 1, 45.CrossRefGoogle Scholar
  39. Koutsaftis, A., & Aoyama, I. (2007). Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Science of the Total Environment, 387, 166–174.CrossRefGoogle Scholar
  40. Little, E. E., & Finger, S. E. (1990). Swimming behaviour as an indicator of sublethal toxicity in fish. Environmental Toxicology and Chemistry, 9, 13–19.CrossRefGoogle Scholar
  41. Little, E. E., Archeski, R. D., Flerov, B. A., & Kozlovskaya, V. I. (1990). Behavioral indicators of sublethal toxicity in rainbow trout. Archives of Environmental Contamination and Toxicology, 19, 380–385.CrossRefGoogle Scholar
  42. Mancini, I., Sicurelli, A., Guella, G., Turk, T., Maček, M., & Sepčić, K. (2004). Synthesis and bioactivity of linear oligomers related to polymeric alkylpyridinium metabolites from the Mediterranean sponge Reniera sarai. Organic and Biomolecular Chemistry, 2, 1368–1375.CrossRefGoogle Scholar
  43. Montes, M. O., Hanna, S. K., Lenihan, H. S., & Keller, A. A. (2012). Uptake, accumulation and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. Journal of Hazardous Materials, 225–226, 139–145.CrossRefGoogle Scholar
  44. Nunes, B. S., Carvalho, F. D., Guilhermino, L. M., & Van Stappenn, G. (2006). Use of the genus Artemia in ecotoxicity testing. Environmental Pollution, 144, 453–462.CrossRefGoogle Scholar
  45. Peng, X., Palma, S., Fisher, N. S., & Wong, S. S. (2011). Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology, 102, 186–198.CrossRefGoogle Scholar
  46. Persoone, G., & Wells, P. G. (1987). Artemia in aquatic toxicology: a review. In P. Sorgeloos, D. A. Bengtson, W. Decleir, & F. Jasper (Eds.), Artemia research and its application (Morphology, genetics, strain characterization, Vol. 1, pp. 259–275). Wetteren: Toxicology. Universa Press.Google Scholar
  47. Radhika Rajasree, S. R., Ganesh Vumar, V., Stanley Abraham, L., & Indabakandan, D. (2010). Studies on the toxicological effects of engineered nanoparticles in environment—a review. International Journal of Applied Bioengineering, 4, 2.Google Scholar
  48. Scott, G. R., & Sloman, K. A. (2004). The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology, 68, 369–392.CrossRefGoogle Scholar
  49. Sorgeloos, P., Van Der Wielen, R., & Persoone, G. (1978). The use of Artemia nauplii for toxicity tests—a critical analysis. Ecotoxicology and Environmental Safety, 2, 249–255.CrossRefGoogle Scholar
  50. Taylor, P., & Brown, J. H. (1999). Acetylcholine. In G. J. Siegel, B. W. Agranoff, R. W. Albers, S. K. Fisher, & M. D. Uhler (Eds.), Basic neurochemistry: molecular, cellular, and medical aspects (pp. 213–242). Philadelphia: Lippincott-Raven.Google Scholar
  51. Tso, C., Zhung, C., Shih, Y., Tseng, Y. M., Wu, S., & Doong, R. (2010). Stability of metal oxide nanoparticles in aqueous solutions. Water Science and Technology, 61, 127–133.CrossRefGoogle Scholar
  52. Varò, I., Navarro, J. C., Amat, F., & Guilhermino, L. (2002). Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemosphere, 48, 563–569.CrossRefGoogle Scholar
  53. Venkateswara Rao, J., Kavitha, P., Jakka, N. M., Sridhar, V., & Usman, P. K. (2007). Toxicity of organoposphates on morphology and locomotor behavior in brine shrimp, Artemia salina. Archives of Environmental Contamination and Toxicology, 53, 227–232.CrossRefGoogle Scholar
  54. Wang, Z., Zhao, J., Li, F., Gao, D., & Xing, B. (2009). Absorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere, 77, 67–73.CrossRefGoogle Scholar
  55. Xia, J., Fu, S., Cao, Z., Peng, J., Peng, J., Dai, T., et al. (2013). Ecotoxicological effects of waterborne PFOS exposure on swimming performance and energy expenditure in juvenile goldfish (Carassius auratus). Journal of Environmental Science, 25, 1672–1679.CrossRefGoogle Scholar
  56. Yin, Z., Ivanov, V. N., Habelhah, H., Tew, K., & Ronai, Z. (2000). Glutathione S-transferase elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Research, 60, 4053–4057.Google Scholar
  57. Zhang, X. J., Yang, L., Zhao, Q., Caen, J. P., He, H. Y., Jin, Q. H., et al. (2002). Induction of acetyl-cholinesterase expression during apoptosis in various cell types. Cell Death and Differentiation, 9, 790–800.CrossRefGoogle Scholar
  58. Zhu, B. K., Wang, P., Zhang, X. D., Jiang, C. C., Li, H., Avery-Kiejda, K. A., et al. (2008). Activation of Jun N-terminal kinase is a mediator of vincristine-induced apoptosis of melanoma cells. Anti-Cancer Drugs, 19, 189–200.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chiara Gambardella
    • 1
    • 2
  • Tina Mesarič
    • 3
  • Tamara Milivojević
    • 3
  • Kristina Sepčić
    • 3
  • Lorenzo Gallus
    • 2
  • Serena Carbone
    • 4
  • Sara Ferrando
    • 2
  • Marco Faimali
    • 1
  1. 1.Institute of Marine SciencesNational Research CouncilGenoaItaly
  2. 2.Department of Earth, Environment and Life Sciences (DISTAV)Università di GenovaGenoaItaly
  3. 3.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  4. 4.DiPSA Alma Mater StudiorumBolognaItaly

Personalised recommendations