Skip to main content
Log in

Diurnal concentrations variations, size distributions for ambient air particles and metallic pollutants (Cr, Mn, Ni, Cd, Pb) during summer season at a traffic area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study characterized and discussed particulate ambient air particulate concentrations and seasonal variations for PM18, PM10, PM2.5, and PM1 during June 2013–July 2013 at this traffic sampling site. In addition, this study also characterized the ambient air particulates size distributions by using MOUDI-100S4 sampler to collect 1-day the ambient suspended particles (PM18, PM10, PM2.5, and PM1) at this sampling site. In addition, the study also showed that the main pollutants contributions were from traffic and residual areas. As for the pollutants seasonal concentrations variations, the results indicated that the average particle concentrations orders were all displayed as daytime > nighttime for PM18, PM10, PM2.5 and PM1 at this characteristic sampling site. The results further indicated that the mean highest of metal concentrations in this study indicated that the average metal concentration were all displayed as Mn > Cr > Ni > Pb > Cd for PM18, PM10, PM2.5 and PM1 on daytime and nighttime at this characteristic sampling site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3

Similar content being viewed by others

References

  • Bencs, L., Ravindra, K., Hoog, J., Spolnika, Z., Bleux, N., Berghmans, P., et al. (2010). Appraisal of measurement methods, chemical composition and sources of fine atmospheric particles over six different areas of Northern Belgium. Environmental Pollution, 158, 3421–3430.

    Article  CAS  Google Scholar 

  • Brunekreef, B., & Maynard, R. L. (2008). A note on the 2008 EU standards for particulate matter atmospheric. Environment, 42(2008), 6425–6430.

    CAS  Google Scholar 

  • Caggiano, R., Macchiato, M., & Trippetta, S. (2010). Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin. Science of The Total Environment, 408, 884–895.

    Article  CAS  Google Scholar 

  • Cheng, Y., Zoud, S. C., Lee, S. C., Chow, J. C., Ho, K. F., Watson, J. G., et al. (2011). Characteristics and source apportionment of PM1 emissions at a roadside station. Journal of Hazardous Materials, 195, 82–91.

    Article  CAS  Google Scholar 

  • Duvall, R. M., Norris, G. A., Dailey, L. A., Burke, J. M., McGee, J. K., Gilmour, M. I., et al. (2008). Source apportionment of particulate matter in the US and associations with lung inflammatory markers. Inhalation Toxicology, 20, 671–683.

    Article  CAS  Google Scholar 

  • Eeftens, M., et al. (2012). Spatial variation of PM2.5, PM10, PM2.5 absorbance and PM coarse concentrations between and within 20 European study areas and the relationship with NO2—results of the ESCAPE project. Atmospheric Environment, 62, 303–317.

    Article  CAS  Google Scholar 

  • Fabretti, J. F., Sauret, N., Gal, J. F., Maria, P. C., & Schärer, U. (2009). Elemental characterization and source identification of PM2.5 using Positive Matrix Factorization: the Malraux road tunnel, Nice, France. Atmospheric Research, 94, 320–329.

    Article  CAS  Google Scholar 

  • Fang, G. C., Huang, Y. L., Huang, J. H., & Liu, C. K. (2012). Dry deposition of Mn, Zn, Cr, Cu and Pb in particles of sizes of 3 μm, 5.6 μm and 10 μm in central Taiwan. Journal of Hazardous Materials, 203–204, 158–168.

  • Fitz, D. R. (2001). Measurements of PM10 and PM2.5 emission factors from paved roads in California. Final Report. Contract California Air Resources Board, Monitoring and Laboratory Division, Sacramento, CA. 98–723.

  • Geng, N., Wang, J., Xu, Y., Zhang, W., Chen, C., & Zhang, R. (2013). PM2.5 in an industrial district of Zhengzhou, China: chemical composition and source apportionment. Particuology, 11, 99–109.

    Article  CAS  Google Scholar 

  • Giorio, C., Tapparo, A., Scapellato, M. L., Carrieri, M., Apostoli, P., & Bartolucci, G. B. (2013). Field comparison of a personal cascade impactor sampler, an optical particle counter and CEN-EU standard methods for PM10, PM2.5, and PM1 measurement in urban environment. Journal of Aerosol Science, 65, 111–120.

    Article  CAS  Google Scholar 

  • Green, N. A., & Morris, V. R. (2006). Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. International Journal of Environmental Research and Public Health, 3, 86–97.

    Article  Google Scholar 

  • Huang, J., Deng, F., Wu, S., & Guo, X. (2012). Comparisons of personal exposure to PM2.5 and CO by different commuting modes in Beijing, China. Science of the Total Environment, 425, 52–59.

    Article  CAS  Google Scholar 

  • Kakooei, H., & Kakooei, A. A. (2007). Measurement of PM10, PM2.5 and TSP Particle Concentrations in Tehran Uran. Journal of Applied Sciences, 7(20), 3081–3085.

    Article  CAS  Google Scholar 

  • Kang, E., et al. (2013). Chemical characteristics of size-resolved aerosols from Asian dust and haze episode in Seoul Metropolitan City. Atmospheric Research, 127, 34–46.

    Article  CAS  Google Scholar 

  • Karanasiou, A., Moreno, T., Amato, F., Tobías, A., Boldo, E., Linares, C., et al. (2012). Variation of PM2.5 concentrations in relation to street washing activities. Atmospheric Environment, 54, 465–469.

    Article  CAS  Google Scholar 

  • Kathuria, V. (2002). Vehicular pollution control in Delhi. Transportation Research Part D: Transport and Environment, 7, 373–387.

    Article  Google Scholar 

  • Khan, M. F., Shirasuna, Y., Hirano, K., & Masunaga, S. (2010). Characterization of PM2.5, PM2.5–10 and PMN10 in ambient air, Yokohama, Japan. Atmospheric Research, 96, 159–172.

    Article  CAS  Google Scholar 

  • Kim, M., Deshpande, S. R., & Crist, K. C. (2007). Source apportionment of fine particulate matter (PM2.5) at a rural Ohio River Valley site. Atmospheric Environment, 41, 9231–9243.

    Article  CAS  Google Scholar 

  • Lopez, J. M., Callen, M. S., Murillo, R., Garcia, T., Navarro, M. V., de la Cruz, M. T., et al. (2005). Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environmental Research, 99, 58–67.

    Article  CAS  Google Scholar 

  • Michael, R. G., & Christos, S. C. (2006). Particle size distribution and atmospheric metals measurements in a rural area in the South Eastern USA. The Science of the Total Environment, 356, 217–227.

    Article  Google Scholar 

  • Olson, D. A., Turlington, J., Duvall, R. M., McDow, S. R., Stevens, C. D., & Williams, R. (2008). Indoor and outdoor concentrations of organic and inorganic molecular markers: source apportionment of PM2.5 using low-volume samples. Atmospheric Environment, 42, 1742–1751.

    Article  CAS  Google Scholar 

  • Osornio-Vargas, A. R., Bonner, J. C., Alfaro-Moreno, E., Martinez, L., Garcia-Cuellar, C., Ponce-de-Leon Rosales, S., et al. (2003). Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. Environmental Health Perspectives, 111(10), 1289–1293.

    Article  CAS  Google Scholar 

  • Osornio-Vargas, A. R., et al. (2011). In vitro biological effects of airborne Pm2.5 and Pm10 from a semi-desert city on the Mexico-US border. Chemosphere, 83(4), 618–626.

    Article  CAS  Google Scholar 

  • Park, S. S., et al. (2013). Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmospheric Research, 73, 62–72.

    Article  CAS  Google Scholar 

  • Pérez, N., Pey, J., Querol, X., Alastuey, A., López, J. M., & Viana, M. (2008). Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmospheric Environment, 42(8), 1677–1691.

    Google Scholar 

  • Perrone, M. R., Becagli, S., Garcia Orza, J. A., Vecchi, R., Dinoi, A., Udisti, R., et al. (2013). The impact of long-range-transport on PM1 and PM2.5 at a Central Mediterranean site. Atmospheric Environment, 71, 176–186.

    Article  CAS  Google Scholar 

  • Putaud, J.-P., Van dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., et al. (2010). A European aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44(10), 1308–1320.

    Google Scholar 

  • Querol, X., Alastuey, A., Moreno, T., Viana, M. M., Castillo, S., Pey, J., et al. (2008). Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmospheric Environment, 42(17), 3964–3979.

    Google Scholar 

  • Querol, X., Pey, J., Pandolfi, M., Alastuey, A., Cusack, M., Pérez, N., et al. (2009). African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmospheric Environment, 43(28), 4266–4277.

    Google Scholar 

  • Sabin, L. D., Hee Lim, J., Teresa Venezia, M., Winer, A. M., Schiff, K. C., & Stolzenbach, K. D. (2006). Dry deposition and resuspension of particle-associated metals near a freeway in Los Angeles. Atmospheric Environment, 40(39), 7528–7538.

    Article  CAS  Google Scholar 

  • Saliba, N. A., El Jam, F., El Tayar, G., Obeid, W., & Roumie, M. (2010). Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city. Atmospheric Research, 97, 106–114.

    Article  CAS  Google Scholar 

  • Salvador, P., Artíñano, B., Viana, M. M., Querol, X., Alastuey, A., González-fernández, I., & Alonso, R., (2011). Spatial and temporal variations in PM10 and PM2.5 across Madrid metropolitan area in 1999–2008. Procedia Environmental Sciences, 4, 198–208.

  • Schwarze, P. E., Ovrevik, J., Lag, M., Refsnes, M., Nafstad, P., Hetland, R. B., et al. (2006). Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Human and Experimental Toxicology, 25(10), 559–579.

    Article  CAS  Google Scholar 

  • Seung-Muk, Y., Lisa, A. T., Sathyapriya, T., Shu, Y., John, H. O., Steven, J. E., et al. (2006). Atmospheric dry deposition of trace elements measured around the urban and industrially impacted NY-NJ harbor. Atmospheric Environment, 40, 6626–6637.

    Article  Google Scholar 

  • Shahsavani, A., Naddafi, K., Jafarzade Haghighifard, N., Mesdaghinia, A. Yunesian, M., Nabizadeh, R., Arahami, M., Sowlat, M. H., Yarahmadi, M., Saki, H., Alimohamadi, M., Nazmara, S., Motevalian, S. A., Goudarzi, G. (2012). The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from april through september 2010, 77, 72–83.

  • Tong, H., Cheng, W. Y., Samet, J. M., Gilmour, M. I., & Devlin, R. B. (2010). Differential cardiopulmonary effects of size-fractionated ambient particulate matter in mice. Cardiovascular Toxicology. doi:10.1007/s12012-010-9082-y.

    Google Scholar 

  • Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health Part C: Environment Carcinogenesis and Ecotoxicology Reviews, 26(4), 339–362.

    Article  CAS  Google Scholar 

  • Veranth, J. M., Reilly, C. A., Veranth, M. M., Moss, T. A., Langelier, C. R., Lanza, D. L., et al. (2004). Inflammatory cytokines and cell death in BEAS-2B lung cells treated with soil dust, lipopolysaccharide, and surface-modified particles. Toxicological Sciences, 82(1), 88–96.

    Article  CAS  Google Scholar 

  • Viau, E., Levi-Schaffer, F., & Peccia, J. (2010). Respiratory toxicity and inflammatory response in human bronchial epithelial cells exposed to biosolids, animal manure, and agricultural soil particulate matter. Environmental Science and Technology, 44(8), 3142–3148.

    Article  CAS  Google Scholar 

  • Wang, Y. S., Wen, T. X., Li, W., Zhao, Y. N., & Li, L. (2009). Elemental composition of PM2.5 and PM10 at Mount Gongga in China during 2006. Atmospheric Research, 93, 801–810.

    Article  Google Scholar 

  • Wang, J., Hu, Z., Chen, Y., Chen, Z., & Xu, S. (2013). Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, Chin. Atmospheric Environment, 68, 221–229.

    Article  CAS  Google Scholar 

  • Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., et al. (2012). Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research, 104–105, 264–272.

    Article  Google Scholar 

  • Yang, Y. J., Wang, Y. S., Wen, T. X., Li, W., Zhao, Y. N., & Li, L. (2009). Elemental composition of PM2.5 and PM10 at Mount Gongga in China during 2006. Atmospheric Research, 93, 801–810.

    Article  CAS  Google Scholar 

  • Yatkin, S., & Bayram, A. (2008). Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Science of The Total Environment, 390(1), 109–123.

    Google Scholar 

  • Zhang, N., Cao, J., Xua, H., & Zhua, C. (2013). Elemental compositions of PM2.5 and TSP in Lijiang, southeastern edge of Tibetan Plateau during pre-monsoon period. Particuology, 11, 63–69.

    Article  Google Scholar 

  • Zhong, Y. W., Ming, H., Zhi, C. L., & John, M. O. (1994). Chesapeake Bay atmospheric deposition study, Year 1: sources and dry deposition of selected elements in aerosol particles. Atmospheric Environment, 28, 1471–1486.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Science Council of the ROC (Taiwan) for financial support under project No. NSC102-2221-E-241-005

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guor-Cheng Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, GC., Kuo, YC., Zhuang, YJ. et al. Diurnal concentrations variations, size distributions for ambient air particles and metallic pollutants (Cr, Mn, Ni, Cd, Pb) during summer season at a traffic area. Environ Monit Assess 186, 4139–4151 (2014). https://doi.org/10.1007/s10661-014-3686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3686-9

Keywords

Navigation