Skip to main content

Advertisement

Log in

Macro- and microelement distribution in organs of Glyceria maxima and biomonitoring applications

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The content of nutrients (N, P, K, Ca and Mg) and of trace metals (Fe, Cu, Mn, Zn, Pb, Cd, Co and Ni) in water, bottom sediments and various organs of Glyceria maxima from 19 study sites selected in the Jeziorka River was determined. In general, the concentrations of nutrients recorded in the plant material decreased in the following order: leaf>root>rhizome>stem, while the concentrations of the trace elements showed the following accumulation scheme: root>rhizome>leaf>stem. The bioaccumulation and transfer factors for nutrients were significantly higher than for trace metals. G. maxima from agricultural fields was characterised by the highest P and K concentrations in leaves, and plants from forested land contained high Zn and Ni amounts. However, the manna grass from small localities showed high accumulation of Ca, Mg and Mn. Positive significant correlations between Fe, Cu, Zn, Cd, Co and Ni concentrations in water or sediments and their concentrations in plant indicate that G. maxima may be employed as a biomonitor of trace element contamination. Moreover, a high degree of similarity was noted between self-organizing feature map (SOFM)-grouped sites of comparable quantities of elements in the water and sediments and sites where G. maxima had a corresponding content of the same elements in its leaves. Therefore, SOFM could be recommended in analysing ecological conditions of the environment from the perspective of nutrients and trace element content in different plant species and their surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baldantoni, D., Alfani, A., di Tomansi, P., Bartoli, G., & de Santo, A. V. (2004). Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution, 130, 149–156.

    Article  CAS  Google Scholar 

  • Baldantoni, D., Maisto, G., Bartoli, G., & Alfami, A. (2005). Analyses of three native aquatic plant species to assess spatial gradients of lake trace element contamination. Aquatic Botany, 83, 48–60.

    Article  Google Scholar 

  • Bonanno, G. (2011). Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety, 74(4), 1057–1064.

    Article  CAS  Google Scholar 

  • Bonanno, G. (2012). Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Ecotoxicology and Environmental Safety, 80, 20–27.

    Google Scholar 

  • Bonanno, G., & Giudice, R. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10(3), 639–645.

    Article  CAS  Google Scholar 

  • Bragato, C., Brix, H., & Malagoli, M. (2006). Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. Ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environmental Pollution, 144(3), 967–975.

    Article  CAS  Google Scholar 

  • Clemens, S., Palmgren, M. G., & Kraemer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309–315.

    Article  CAS  Google Scholar 

  • Demirezen, D., & Aksoy, A. (2006). Common hydrophytes as bioindicators of iron and manganese pollutions. Ecological Indicators, 6, 388–393.

    Article  CAS  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132(1), 29–40.

    Article  CAS  Google Scholar 

  • Fawzy, M. A., Badr, N. E.-s., El-Khatib, A., & Abo-El-Kassem, A. (2012). Heavy monitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environmental Monitoring and Assessment, 184, 1753–1771.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1993). Biogeochemia pierwiastków śladowych. Warszawa: PWN.

    Google Scholar 

  • Knudsen, D., & Petterson, G. A. (1982). Lithium, sodium and potassium. In A. L. Page (Ed.), Methods of soil analysis part 2 (pp. 234–236). Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Kohonen, T. (1995). Self-organizing maps. New York: Springer.

    Book  Google Scholar 

  • Maiti, S. K., & Jaiswal, S. (2008). Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environmental Monitoring and Assessment, 136(1–3), 355–370.

    CAS  Google Scholar 

  • Markert, B. (1992). Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio, 103, 1–30.

    Google Scholar 

  • Mazej, Z., & Germ, M. (2009). Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere, 74(5), 642–647.

    Article  CAS  Google Scholar 

  • Mendiguchía, C., Moreno, C., & García-Vargas, M. (2007). Evaluation of natural and anthropogenic influences on Guadalquivir River (Spain) by dissolved heavy metals and nutrients. Chemosphere, 69(10), 1509–1517.

    Article  Google Scholar 

  • Mishra, V. K., Upadhyay, A. R., Pandey, A. R., & Tripathi, S. K. (2008). Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an antrophogenic lake affected by coal mining effluent. Environmental Monitoring and Assessment, 141(1–3), 49–58.

    Article  CAS  Google Scholar 

  • Mugwedi, L. F. (2012). Invasion ecology of Glyceria maxima in KZN Rivers and wetlands. Dissertation Master of Science. Johannesburg: University of the Witwatersrand.

    Google Scholar 

  • Munteanu, V., & Munteanu, G. (2007). Biomonitoring of mercury pollution: a case study from the Dniester River. Ecological Indicators, 7, 489–496.

    Article  Google Scholar 

  • Olsen, S., & Sommers, L. E. (1982). Phosphorus. In A. L. Page (Ed.), Methods of soil analysis part 2 (pp. 141–416). Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Olszewska, B., Pływaczyk, L., & Łyczko, W. (2007). Wpływ spiętrzenia rzeki na przepływy wody w małym cieku w dolinie rzecznej. Acta Formatio Circumiectus, 6, 27–32.

    Google Scholar 

  • Parker, R. E. (1983). Introductory statistics for biology. London: E. Arnold.

    Google Scholar 

  • Samecka-Cymerman, A., Kolon, K., Stankiewicz, A., Mróz, L., Kaszewska, J., & Kempers, A. J. (2011). Rhizomes and fronds of Athyrium filix-femina as possible bioindicators of chemical elements from soils over different parent materials in southwest Poland. Ecological Indicators, 11(5), 1105–1111.

    Article  CAS  Google Scholar 

  • Shuping, L. S., Snyman, R. G., Odendaal, J. P., & Ndakidemi, P. A. (2011). Accumulation and distribution of metals in Bolboschoenus maritimus (Cyperaceae), from South African River. Water, Air, and Soil Pollution, 216(1–4), 319–328.

    Article  CAS  Google Scholar 

  • Skorbiłowicz, E. (2004). Evaluation of environment al quality in selected rivers of Siemiatyczne district. Water-Environment-Rural Areas, 4, 429–444.

    Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: the principles and practice of statistics in biological research. New York: Freeman.

    Google Scholar 

  • StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 10.

  • Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47(3), 271–280.

    Article  CAS  Google Scholar 

  • Sundblad, K., & Robertson, K. (1988). Harvesting reed sweetgrass (Glyceria maxima, poaceae): effects on growth and rhizome storage of carbohydrates. Economic Botany, 42(4), 495–502.

    Article  Google Scholar 

  • Tutin, T. G., & Heywood, V. H. (1980). Flora Europaea. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vardanyan, L. G., & Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake system. Environment International, 32(2), 208–218.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., & Jockwer, F. (1999). Accumulation of heavy metals in plants grow on mineralized soils in the Austrian Alps. Environmental Pollution, 104(1), 145–155.

    Article  CAS  Google Scholar 

  • Wesołowski, P., Trzaskoś, M., & Krysiewicz, A. (2011). Botanical composition and the content of some chemical elements in plants of the littoral zone of lake Starzyc. Water Environment Rural Areas, 33, 331–345.

    Google Scholar 

  • Zar, J. (1999). Biostatistical analysis. New Jersey: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Klink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klink, A., Stankiewicz, A., Wisłocka, M. et al. Macro- and microelement distribution in organs of Glyceria maxima and biomonitoring applications. Environ Monit Assess 186, 4057–4065 (2014). https://doi.org/10.1007/s10661-014-3680-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3680-2

Keywords

Navigation