Skip to main content

Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India

Abstract

Soil nitrifiers have been showing an important role in assessing environmental pollution as sensitive biomarkers. In this study, the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated in long-term industrial waste effluent (IWE) polluted soils. Three different IWE polluted soils characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) were collected in triplicate along Mahi River basin, Gujarat, Western India. Quantitative numbers of ammonia monooxygenase α-subunit (amoA) genes as well as 16S rRNA genes indicated apparent deleterious effect of IWE on abundance of soil AOA, AOB, bacteria, and archaeal populations. Relatively, AOB was more abundant than AOA in the highly contaminated soil R3, while predominance of AOA was noticed in uncontaminated (R1) and moderately contaminated (R2) soils. Soil potential nitrification rate (PNR) significantly (P < 0.05) decreased in polluted soils R2 and R3. Reduced diversity accompanied by apparent community shifts of both AOB and AOA populations was detected in R2 and R3 soils. AOB were dominated with Nitrosospira-like sequences, whereas AOA were dominated by Thaumarchaeal “group 1.1b (Nitrososphaera clusters).” We suggest that the significant reduction in abundance and diversity AOA and AOB could serve as relevant bioindicators for soil quality monitoring of polluted sites. These results could be further useful for better understanding of AOB and AOA communities in polluted soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic Press.

    Google Scholar 

  2. Allison, S. D., & Martiny, J. B. H. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 105, 11512–11519.

    CAS  Article  Google Scholar 

  3. Angel, R., Asaf, L., Ronen, Z., & Nejidat, A. (2010). Nitrogen transformations and diversity of ammonia-oxidizing bacteria in a desert ephemeral stream receiving untreated wastewater. Microbial Ecology, 59, 46–58.

    CAS  Article  Google Scholar 

  4. Cao, H., Li, M., Hong, Y., & Gu, J. D. (2011). Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Systematic and Applied Microbiology, 34, 513–523.

    CAS  Article  Google Scholar 

  5. Cao, P., Zhang, L. M., Shen, J. P., Zheng, Y. M., Di, H. J., & He, J. Z. (2012). Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiology and Ecology, 80, 146–158.

    CAS  Article  Google Scholar 

  6. CPCB. (1996). Inventories of hazardous waste generation in five districts (Ahmedabad, Vadodara, Bharuch, Surat and Valsad) of Gujarat. Central Pollution Control Board (Ministry of Environment & Forests, Government of India). ISBN 8186396632. http://www.cpcb.nic.in/Publications_Dtls.php?msgid=11.

  7. Erguder, T. H., Boon, N., Wittebolle, L., Marzorati, M., & Verstraete, W. (2009). Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiology and Ecology Reviews, 33, 855–869.

    CAS  Article  Google Scholar 

  8. Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., & Oakley, B. B. (2005). Ubiquity and diversity of ammonia oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 102, 14683–14688.

    CAS  Article  Google Scholar 

  9. Ge, Y., Zhang, J., Zhang, L., Yang, M., & He, J. (2008). Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. Journal of Soils and Sediments, 8, 43–50.

    CAS  Article  Google Scholar 

  10. Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B. C., James, P., et al. (2011). Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America, 108, 21206–21211.

    CAS  Article  Google Scholar 

  11. Hatzenpichler, R. (2012). Diversity, physiology, and niche differentiation of ammonia oxidizing archaea. Applied and Environmental Microbiology, 78, 7501–7510.

    CAS  Article  Google Scholar 

  12. Hatzenpichler, R., Lebedeva, E. V., Spieck, E., Stoecker, K., Richter, A., Daims, H., & Wagner, M. (2008). A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences of the United States of America, 105, 2134–2139.

    CAS  Article  Google Scholar 

  13. He, J. Z., Hu, H. W., & Zhang, L. M. (2012). Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology and Biochemistry, 55, 146–154.

    CAS  Article  Google Scholar 

  14. He, J. Z., Shen, J. P., Zhang, L. M., Zhu, Y. G., Zheng, Y. M., Xu, M. G., & Di, H. J. (2007). Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 9, 2364–2374.

    CAS  Article  Google Scholar 

  15. Ibekwe, A. M., Grieve, C. M., & Lyon, S. R. (2003). Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Applied and Environmental Microbiology, 69, 5060–5069.

    CAS  Article  Google Scholar 

  16. Jin, T., Zhang, T., & Yan, Q. (2010). Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Applied Microbiology and Biotechnology, 87, 1167–1176.

    CAS  Article  Google Scholar 

  17. Kelly, J. J., Policht, K., Grancharova, T., & Hundal, L. S. (2011). Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Applied and Environmental Microbiology, 77, 6551–6558.

    CAS  Article  Google Scholar 

  18. Kemnitz, D., Kolb, S., & Conrad, R. (2005). Phenotypi characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Environmental Microbiology, 7, 553–565.

    CAS  Article  Google Scholar 

  19. Kowalchuk, G. A., & Stephen, J. R. (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Reviews of Microbiology, 55, 485–529.

    CAS  Article  Google Scholar 

  20. Kurola, J., Salkinoja-Salonen, M., Aarnio, T., Hultman, J., & Romantschuk, M. (2005). Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated land farming soil. FEMS Microbiology Letters, 250, 33–38.

    CAS  Article  Google Scholar 

  21. Labunska, I., Stephenson, A., Brigden, K., Santillo, D., Stringer, R., Johnston, P. A., & Ashton, J. M. (1999). Organic and heavy metal contaminants in samples taken at three industrial estates in Gujarat, India. Green peace research laboratories, Netherlands. Technical Note 05/99. http://www.greenpeace.org/international/Global/international/planet2/report/1999/11/toxichotspots-a-greenpeace.pdf

  22. Laverman, A. M., Speksnijder, A. G., Braster, M., Kowalchuk, G. A., Verhoef, H. A., & Van Verseveld, H. W. (2001). Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil. Microbial Ecology, 42, 35–45.

    CAS  Google Scholar 

  23. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., et al. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442, 806–809.

    CAS  Article  Google Scholar 

  24. Li, X., Zhum, Y. G., Cavagnaro, T. R., Chen, M., Sun, J., Chen, X., & Qiao, M. (2009). Do ammonia-oxidizing archaea respond to soil Cu contamination similarly as ammonia-oxidizing bacteria? Plant and Soil, 324, 209–217.

    CAS  Article  Google Scholar 

  25. Limpiyakorn, T., Fürhacker, M., Haberl, R., Chodanon, T., Srithep, P., & Sonthiphand, P. (2013). amoA-encoding archaea in wastewater treatment plants: a review. Applied Microbiology and Biotechnology, 97, 1425–1439.

    CAS  Article  Google Scholar 

  26. Liu, Y. R., Zheng, Y. M., Shen, J. P., Zhang, L. M., & He, J. Z. (2010). Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environmental Science and Pollution Research, 17, 1237–1244.

    CAS  Article  Google Scholar 

  27. Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R., & Stahl, D. A. (2009). Ammonia oxidation kinetics determines niche separation of nitrifying archaea and bacteria. Nature, 461, 976–979.

    CAS  Article  Google Scholar 

  28. Marzorati, M., Wittebolle, L., Boon, N., Daffonchi, D., & Verstraete, V. (2008). How to get more out of molecular fingerprints: practical tools for microbial ecology. Environmental Microbiology, 10, 1571–1581.

    CAS  Article  Google Scholar 

  29. Mertens, J., Broos, K., Wakelin, S. A., Kowalchuk, G. A., Springael, D., & Smolders, E. (2009). Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. The ISME Journal, 3, 916–923.

    CAS  Article  Google Scholar 

  30. Nugroho, R. A., Rolling, W. F. M., Laverman, A. M., & Verhoef, H. A. (2007). Low nitrification rates in acid Scots pine forest soils are due to pH-related factors. Microbial Ecology, 53, 87–97.

    Article  Google Scholar 

  31. Ollivier, J., Wanat, N., Austruy, A., Hitmi, A., Joussein, E., Welzl, G., Munch, J. C., & Schloter, M. (2012). Abundance and diversity of ammonia-oxidizing prokaryotes in the root–rhizosphere complex of Miscanthus × giganteus grown in heavy metal-contaminated soils. Microbial Ecology, 64, 1038–1046.

    CAS  Article  Google Scholar 

  32. Papa, S., Bartoli, G., Pellegrino, A., & Fioretto, A. (2010). Microbial activities and trace element contents in an urban soil. Environmental Monitoring and Assessment, 165, 193–203.

    CAS  Article  Google Scholar 

  33. Pester, M., Rattei, T., Flechl, S., Gröngröft, A., Richter, A., Overmann, J., et al. (2012). amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environmental Microbiology, 14, 525–539.

    CAS  Article  Google Scholar 

  34. Prasad, D., Subrahmanyam, G., & Bolla, K. (2012). Effect of cadmium on abundance and diversity of free living nitrogen fixing Azotobacter spp. Journal of Environmental Science and Technology, 5, 184–191.

    CAS  Article  Google Scholar 

  35. Prosser, J. I., & Nicol, G. W. (2008). Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environmental Microbiology, 10, 2931–2941.

    CAS  Article  Google Scholar 

  36. Qu, J., Ren, G., Chen, B., Fan, J., & Yong, E. (2011). Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland. Environmental Monitoring and Assessment, 182, 597–606.

    CAS  Article  Google Scholar 

  37. Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A., & Wood, C. (2009). Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecological Indicators, 9, 1212–1221.

    CAS  Article  Google Scholar 

  38. Rotthauwe, J. H., Witzel, K. P., & Liesack, W. (1997). The ammonia monooxygenase structural gene amoAas a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 63, 4704–4712.

    CAS  Google Scholar 

  39. Schleper, C., Jurgens, G., & Jonuscheit, M. (2005). Genomic studies of uncultivated archaea. Nature Reviews Microbiology, 3, 479–488.

    CAS  Article  Google Scholar 

  40. Shen, J. P., Zhang, L. M., Zhu, Y. G., Zhang, J. B., & He, J. Z. (2008). Abundance and composition of ammonia-oxidizing bacteria and ammonia oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 10, 1601–1611.

    CAS  Article  Google Scholar 

  41. Shukurov, N., & Pen-mouratov, S. (2009). Soil biogeochemical properties of Angren industrial area, Uzbekistan. Journal of Soils and Sediments, 9, 206–215.

    CAS  Article  Google Scholar 

  42. Smolders, E., Brans, K., Coppens, F., & Merckx, R. (2001). Potential nitrification rate as a tool for screening toxicity in metal contaminated soils. Environmental Toxicology and Chemistry, 20, 2469–2474.

    CAS  Article  Google Scholar 

  43. Spang, A., Poehlein, A., Offre, P., Zumbrägel, S., Haider, S., Rychlik, N., et al. (2012). The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environmental Microbiology, 14, 3122–3145.

    CAS  Article  Google Scholar 

  44. Stefanowicz, A. M., Niklinska, M., & Laskowski, R. (2008). Metals affect soil bacterial and fungal functional diversity differently. Environmental Toxicology and Chemistry, 27, 591–598.

    CAS  Article  Google Scholar 

  45. Stephen, J. R., McCaig, A. E., Smith, Z., Prosser, J. I., & Embley, T. M. (1996). Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 62, 4147–4154.

    CAS  Google Scholar 

  46. Suzuki, M. T., Taylor, L. T., & DeLong, E. F. (2000). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5I-nuclease assays. Applied and Environmental Microbiology, 66, 4605–4614.

    CAS  Article  Google Scholar 

  47. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    CAS  Article  Google Scholar 

  48. Thavamani, P., Malik, S., Beer, M., Megharaj, M., & Naidu, R. (2012). Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. Journal of Environmental Management, 99, 10–17.

    CAS  Article  Google Scholar 

  49. Tourna, M., Freitag, T. E., Nicol, G. W., & Prosser, J. I. (2008). Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 10, 1357–1364.

    CAS  Article  Google Scholar 

  50. Vasileiadis, S., Coppolecchia, D., Puglisi, E., Balloi, A., Mapelli, F., Hamon, R. E., Daniele, D., & Trevisan, M. (2012). Response of ammonia oxidizing bacteria and archaea to acute zinc stress and different moisture regimes in soil. Microbial Ecology, 64, 1028–1037.

    CAS  Article  Google Scholar 

  51. Wang, X., Wen, X., Xia, Y., Hu, M., Zhao, F., & Ding, K. (2012). Ammonia oxidizing bacteria community dynamics in a pilot-scale wastewater treatment plant. PLoS ONE, 7, e36272.

    CAS  Article  Google Scholar 

  52. Webster, G., Embley, T. M., & Prosser, J. I. (2002). Grassland management regimens reduce small-scale heterogeneity and species diversity of β-Proteobacterial ammonia oxidizer populations. Applied and Environmental Microbiology, 68, 20–30.

    CAS  Article  Google Scholar 

  53. Wells, G. F., Park, H. D., Yeung, C. H., Eggleston, B., Francis, C. A., & Criddle, C. S. (2009). Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environmental Microbiology, 11, 2310–2328.

    CAS  Article  Google Scholar 

  54. Wessen, E., & Hallin, S. (2011). Abundance of archaeal and bacterial ammonia oxidizers—possible bioindicator for soil monitoring. Ecological Indicators, 6, 1696–1698.

    Article  Google Scholar 

  55. Xia, Y., Zhu, Y. G., Gu, Q., & He, J. Z. (2007). Does long-term fertilization treatment affect the response of soil ammonia-oxidizing bacterial communities to Zn contamination? Plant and Soil, 301, 245–254.

    CAS  Article  Google Scholar 

  56. Yao, H., Campbell, C. D., Chapman, S. J., Freitag, T. E., Nicol, G. W., & Singh, B. K. (2013). Multi-factorial drivers of ammonia oxidizer communities: evidence from a national soil survey. Environmental Microbiology, 15, 2545–2556.

    CAS  Article  Google Scholar 

  57. Zhang, L., Hu, H., Shen, J., & He, J. Z. (2011). Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME Journal, 6, 1032–1045.

    Article  Google Scholar 

  58. Zhang, Q., Zhu, L., Wang, J., Xie, H., Wang, J., Wang, F., & Sun, F. (2014). Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environmental Monitoring and Assessment. doi:10.1007/s10661-013-3581-9.

    Google Scholar 

  59. Zhou, Z. F., Zheng, Y. M., Shen, J. P., Zhang, L. M., & He, J. Z. (2011). Response of denitrification genes nirS, nirK, and nosZ to irrigation water quality in a Chinese agricultural soil. Environmental Science and Pollution Research, 18, 1644–1652.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Sciences for the Developing World (TWAS), Trieste, Italy and Chinese Academy of Sciences (CAS), Beijing, China under the scheme “TWAS-CAS fellowship programme for postgraduate research” to GS for the year 2010. This work was partly supported by the Natural Science Foundation of China (41371265, 41201523).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ju-Pei Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 12 kb)

Table S2

(DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Subrahmanyam, G., Shen, JP., Liu, YR. et al. Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India. Environ Monit Assess 186, 4037–4050 (2014). https://doi.org/10.1007/s10661-014-3678-9

Download citation

Keywords

  • Industrial waste effluent
  • Ammonia-oxidizing bacteria
  • Ammonia-oxidizing archaea
  • amoA gene
  • Community shift