Skip to main content

Advertisement

Log in

Monitoring and validating the temporal dynamics of interday streamflow from two upland head micro-watersheds with different vegetative conditions during dry periods of the growing season in the Bohemian Massif, Czech Republic

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

At present, dynamic land use, climate change, and growing needs for fresh water are increasing the demand on the ecosystem effects of forest vegetation. Mountainous areas are at the forefront of scientific interest in European forest ecology and forest hydrology. Although uplands cover a significant area of the Czech Republic and other countries and are often covered with forest formations, they do not receive an appropriate amount of attention. Therefore, two experimental upland head micro-watersheds in the Bohemian Massif were selected for study because they display similar natural conditions, but different vegetative conditions (forest versus meadow). During the 2011 growing season, short-term streamflow measurements were carried out at the discharge profiles of both catchments and were evaluated in relation to climatic data (rainfall and temperature). The basic premise was that the streamflow in a forested catchment must exhibit different temporal dynamics compared to that in treeless areas and that these differences can be attributed to the effects of woody vegetation. These conclusions were drawn from measurements performed during dry periods lasting several days. A decreasing streamflow trend during the day part of the day (0900–1900 hours) was observed in both localities. The decrease reached approx. 44 % of the initial morning streamflow (0.24 dm3 s−1 day−1) in the treeless catchment and approx. 20 % (0.19 dm3 s−1 day−1) in the forested catchment. At night (1900–0900 hours), the streamflow in the forested catchment increased back to its initial level, whereas the streamflow in the treeless catchment stagnated or slowly decreased. We attribute these differences to the ecosystem effects of woody vegetation and its capacity to control water loss during the day. This type of vegetation can also function as a water source for the hydrographic network during the night.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allan, J. D., & Flecker, A. S. (1993). Biodiversity conservation in running waters. Identifying the major factors that threaten destruction of riverine species and ecosystems. BioScience, 43(1), 32–43.

    Article  Google Scholar 

  • Arthington, A. H., Bunn, S. E., Poff, N. L., & Naiman, R. J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications, 16(4), 1311–1318.

    Article  Google Scholar 

  • Arthington, A. H., Naiman, R. J., Mcclain, M. E., & Nilsson, C. (2010). Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology, 55, 1–16.

    Article  Google Scholar 

  • Bosch, J. M., & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55(1/4), 3–23.

    Article  Google Scholar 

  • Brown, E. A., Zhang, L., Mcmahon, A. T., Western, W. A., & Vertessy, A. R. (2004). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(2005), 28–61.

    Google Scholar 

  • Burt, T. P., & Swank, W. T. (1992). Flow frequency responses to hardwood-to-grass conversion and subsequent succession. Hydrological Processes, 6(2), 179–188.

    Article  Google Scholar 

  • Culek, M. et al. (2005). Biogeografické členění České republiky II. Praha. 589 pp. ISBN: 80-86064-82-4.

  • Deutscher, J., Kupec, P. (2010). Flow rate evaluation of small forest streams [CD-ROM]. In: Colloquium of Landscape Management. (pp. 7–13). ISBN: 978-80-7375-397-9. Available at: http://www.utok.cz/sites/default/files/data/USERS/u21/dokumenty/Colloquium%20of%20landscape%20management%202010.PDF.

  • Deutscher, J., Kupec, P. (2012). Flow-rate estimation of a small watercourse as a basic water balance element of a forest microwatershed. In Proceedings of the International Conference Integrated Management of Environmental Resources, Suceava, November 4–6th, 2011. Suceava, Romania: Editura Universitatii “Stefan cel Mare” Suceava, Romania, pp. 119–124. ISBN: 978-973-666-388-8.

  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., et al. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163–182.

    Article  Google Scholar 

  • Goldstein, R. M., Carlisle, D. M., Meador, M. R., & Short, T. M. (2007). Can basin land use effects on physical characteristics of streams be determined at broad geographic scales? Environmental Monitoring and Assessment, 130, 495–510.

    Article  Google Scholar 

  • Johnson, E. A., & Kovner, J. L. (1956). Effect on streamflow of cutting a forest understory. Forest Science, 2, 82–91.

    Google Scholar 

  • Kantor, P. (1995). Vodní režim smrkových a bukových porostů jako podklad pro návrh druhové skladby vodohospodářsky významných středohorských lesů. Habilitation thesis. Brno, MZLU 1995, Lesnická a dřevařská fakulta: 332 pp.

  • Kidane, Y., Stahlmann, R., Beierkuhnlein, C. (2012). Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environmental Monitoring and Assessment, 184(12), 7473–7489. ISSN 1573–2959.

  • Křovák, F., Kuřík, P. (2001). Vliv lesních ekosystémů na odtokové poměry krajiny. Aktuality šumavského výzkumu. Srní. pp 75–79.

  • Kulhavý, Z., et al. (2002). Extrémní průtoky v pokusných povodích a pravděpodobnost jejich výskytu. Pardubice: Výzkumný ústav meliorací a ochrany půdy Praha.

    Google Scholar 

  • Langhammer, J., & Vilímek, V. (2008). Landscape changes as a factor affecting the course and consequences of extreme floods in the Otava River basin, Czech Republic. Environmental Monitoring and Assessment, 144, 53–66.

    Article  Google Scholar 

  • Lynch, J. A., & Corbett, E. S. (1990). Evaluation of best management practices for controlling nonpoint pollution from silvicultural operations. Water Resources Bulletin, 26, 41–52.

    Article  CAS  Google Scholar 

  • Martin, C. W., & Pierce, R. S. (1980). Clearcutting patterns affect nitrate and calcium in streams of New Hampshire. Journal of Forestry, 78, 268–276.

    Google Scholar 

  • Mráz, K. et al. (1990). Vodní režim půdy, vztah k přírůstu dřevní hmoty a odtok vody v porostech různých dřevin. Final report. Strnady, 50 pp.

  • Pomeroy, J. H. (2003). Stream turbidity signatures in the Hayward Brook watershed study. MS thesis, Faculty of Forestry and Environmental Management, University of New Brunswick, P.O. Box 4400, Fredericton, NB, Canada E3B 5A3.

  • Raspe, S., Beuker, E., Preuhsler, T., Bastrup-Birk, A. (2010). Meteorological measurements. Manual Part IX, 35 pp. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg. ISBN: 978-3-926301-03-1.

  • Richter, B. D., Braun, D. P., Mendelson, M. A., & Master, L. L. (1997). Treats to imperiled freshwater fauna. Conservation Biology, 11(5), 1081–1093.

    Article  Google Scholar 

  • Richter, B. D., Mathews, R., Harrison, D. L., & Wigington, R. (2003). Ecologically sustainable water management: managing river flows for ecological integrity. Ecological Applications, 13(1), 206–224.

    Article  Google Scholar 

  • Richter, B. D., Warner, A. T., Meyer, J. L., & Lutz, K. (2006). A collaborative and adaptive process for developing environmental flow recommendations. River Research and Applications, 22, 297–318.

    Article  Google Scholar 

  • Riedl, O., Zachar, D. a kol. (1974). Lesotechnické meliorace. Státní zemědělské nakladatelství v Praze, 568 pp.

  • Šanda, M., Hrnčíř, M., Novák, L., & Císlerová, M. (2006). Vliv půdního profilu na srážko-odtokový proces. Journal of Hydrology and Hydromechanics, 54, 183–191.

    Google Scholar 

  • Sanda, M., Kulasová, A., & Císlerová, M. (2009). Hydrological processes in the subsurface investigated by water isotopes and silica. Soil and Water Research, 4(Special Issue 2), 83–92.

    Google Scholar 

  • Stednick, J. D. (1996). Monitoring the effects of timber harvest on annual water yield. Journal of Hydrology, 176(1/4), 79–95.

    Article  Google Scholar 

  • Stocker, O. (1956). Die Abhängigkeit der Transpiration von den Umweltfaktoren. In: Encyclopedia of Plant Physiology, vol. III Water Relations of Plants (Ed. by W. Ruhland), pp. 436–488. Springer-Verlag, Berlin, Göttingen, Heidelberg

  • Strayer, D. L. (2006). Challenges for freshwater invertebrate conservation. Journal of North American Benthological Society, 25(2), 271–287.

    Article  Google Scholar 

  • Sun, G., Mcnulty, S. G., Moore Myers, J. A., & Cohen, E. C. (2008). Impacts of multiple stresses on water demand and supply across the southeastern United States. Journal of American Water Resources Association, 44(6), 1441–1457.

    Article  Google Scholar 

  • Švihla, V. (2001). Vliv lesa na odtokové poměry na malém povodí. Lesnická práce 2. Dostupný také z. Retrieved from http://www.silvarium.cz/lesnicka-prace-c-2-01/vliv-lesa-na-odtokove-pomery-na-malem-povodi. Accessed 5 Feb 2014.

  • Švihla, V., Černohous, V., & Šach, F. (2010). Hydrologická bilance elementární odtokové plochy lesního povodí v Orlických horách. Zprávy lesnického výzkumu, 55(3), 201–210.

    Google Scholar 

  • Swank, W. T., Vose, J. M., & Elliott, K. J. (2001). Long-term hydrologic and water quality responses following commercial clear cutting of mixed hardwoods on a southern Appalachian catchment. Forest Ecology and Management, 143, 163–178.

    Article  Google Scholar 

  • Tesař, M., Šír, M., Kubík, F., Pražák, J., & Strnad, E. (1992). Transpirace lesního porostu ve vegetačním období při dostatku vody v půdě. Lesnictví-Forestry, 38, 877–888.

    Google Scholar 

  • Vörösmarty, C. J., Mcintyre Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.

    Article  Google Scholar 

  • Wilhite, D. A., Glantz, M. H. (1985). Understanding the drought phenomenon: the role of definitions. Water International 10, 111–120.

    Google Scholar 

  • Zhang, L., Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37(3), 7001–7708.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Internal Grant Agency of the Faculty of Forestry and Wood Technology of Mendel University in Brno under project no. 45/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Deutscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutscher, J., Kupec, P. Monitoring and validating the temporal dynamics of interday streamflow from two upland head micro-watersheds with different vegetative conditions during dry periods of the growing season in the Bohemian Massif, Czech Republic. Environ Monit Assess 186, 3837–3846 (2014). https://doi.org/10.1007/s10661-014-3661-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3661-5

Keywords

Navigation