Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 6, pp 3431–3444 | Cite as

Microbial contamination of dental unit waterlines and effect on quality of indoor air

  • Duygu Göksay KadaifcilerEmail author
  • Aysin Cotuk
Article

Abstract

The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m3) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m3) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study’s determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.

Keywords

Aerobic mesophilic heterotrophic bacteria Bioaerosol(s) Dental unit waterlines Indoor air quality Microbial contamination Microfungi 

Notes

Acknowledgments

We gratefully thank to Prof. Dr. Ahmet ASAN and Dr. Burhan SEN for the assistance about sharing the laboratory facilities. This work was supported by the “Research Fund of Istanbul University” (project number 1847, UDP–14595).

References

  1. American Dental Association. (1996). American Dental Association statement on dental unit waterlines. Journal of the American Dental Association, 127, 185–186.CrossRefGoogle Scholar
  2. Anaissie, E. J., Kuchar, R. T., Rex, J. H., Francesconi, A., Kasai, M., Muller, F.-M. C., et al. (2001). Fusariosis associated with pathogenic Fusarium species colonization of a hospital water system: a new paradigm fort the epidemiology of opportunistic mold infections. Clinical Infectious Diseases, 33, 1871–1878.CrossRefGoogle Scholar
  3. Arvanitidou, M., Kanellou, K., Katsouyannopoulos, V., & Tsakris, A. (2002). Occurrence and densities of fungi from northern Greek coastal bathing waters and their relation with faecal pollution indicators. Water Research, 36, 5127–5131.CrossRefGoogle Scholar
  4. Asan, A., Kırgız, T., Şen, B., Çamur-Elipek, B., Güner, U., & Güher, H. (2003). Isolation, identification and seasonal distribution of airborne and waterborne fungi in Terkos Lake (İstanbul-Turkey). Journal of Basic Microbiology, 43(2), 83–95.CrossRefGoogle Scholar
  5. Atlas, R. M., Williams, J. F., & Huntington, M. K. (1995). Legionella contamination of dental-unit waters. Applied and Environmental Microbiology, 61(4), 1208–1213.Google Scholar
  6. Aydogdu, H., & Asan, A. (2008). Airborne fungi in child day care centers in Edirne City, Turkey. Environmental Monitoring and Assessment, 147, 423–444.CrossRefGoogle Scholar
  7. Aydogdu, H., Asan, A., & Tatman Otkun, M. (2010). Indoor and outdoor bacteria in child day-care centers in Edirne city (Turkey), seasonal distribution and influence of meteorological factors. Environmental Monitoring and Assessment, 164, 53–66.CrossRefGoogle Scholar
  8. Barlean, L., Smaranda Iancu, L., Luminita Minea, M., Danila, I., & Baciu, D. (2010). Airborne microbial contamination in dental practices in Iasi, Romania. Oral Health and Dental Management in the Black Sea Countries, 9(1), 16–20.Google Scholar
  9. Barnett, H. L., & Hunter, B. B. (1999). Illustrated genera of imperfect fungi (4th ed.). St. Paul: APS.Google Scholar
  10. Borella, P., Bargellini, A., Marchesi, I., Rovesti, S., Stancanelli, G., Scaltriti, S., et al. (2008). Prevalence of anti-legionella antibodies among Italian hospital workers. Journal of Hospital Infection, 69, 148–155.CrossRefGoogle Scholar
  11. Cellini, L., Di Campli, E., Di Candia, M., & Chiavaroli, G. (2001). Quantitative microbial monitoring in a dental office. Public Health, 115, 301–305.CrossRefGoogle Scholar
  12. Cloete, T. E., Thantsha, M. S., Maluleke, M. R., & Kirkpatrick, R. (2009). The antimicrobial mechanism of electrochemically activated water against Pseudomonas aeruginosa and Escherichia coli as determined by SDS-PAGE analyses. Journal of Applied Microbiology, 107, 379–384.CrossRefGoogle Scholar
  13. Coleman, D. C., Q’Donnell, M. J., Shore, A. C., Swan, J., & Russell, R. J. (2007). The role of manufacturers in reducing biofilms in dental chair waterlines. Journal of Dentistry, 35, 701–711.CrossRefGoogle Scholar
  14. Coleman, D. C., Q’Donnell, M. J., Shore, A. C., & Russell, R. J. (2009). Biofilm problems in dental unit water systems and its practical control. Journal of Applied Microbiology, 1–14.Google Scholar
  15. Commission of the European Communities. (1993). Environment and quality of life report no. 12 biological particles in indoor environments. Brussels: Commission of the European Communities Directorate-General Xlll Information Technologies and Industries, and Telecommunications.Google Scholar
  16. Czarneski, M. A. (2009). Microbial decontamination of a 65-room new pharmaceutical research facility. Applied Biosafety Journal of the American Biological Safety Association, 14(2), 81–88.Google Scholar
  17. Doggett, M. S. (2000). Characterization of fungal biofilms within a municipal water distribution system. Applied and Environmental Microbiology, 66(3), 1249–1251.CrossRefGoogle Scholar
  18. Dogruoz Gungor, N., Göksay Kadaifciler, D., & Oztan Peker, O. (2013). Investigation of the bacterial load and antibiotic susceptibility of dental units. Environmental Monitoring and Assessment. doi: 10.1007/s10661-013-3498-3.
  19. Dutil, S., Meriaux, A., de Latremoillle, M. C., Lazure, L., Barbeau, J., & Duchaine, C. (2009). Measurement of airborne bacteria and endotoxin generated during dental cleaning. Journal of Occupational and Environmental Hygiene, 6, 121–130.CrossRefGoogle Scholar
  20. Ellis, M. B. (1971). Dematiaceous hyphomycetes. London: The Eastern.Google Scholar
  21. Flannigan, B., Samson, R. A., & Miller, J. D. (2011). Microorganisms in home and indoor work environments (Diversity, health impacts, investigation and control 2nd ed.). New York: Taylor & Francis Group.CrossRefGoogle Scholar
  22. Fotos, P. G., WestfalL, H. N., Snyder, I. S., Miller, R. W., & Mutchler, B. M. (1985). Prevalence of Legionella-specific IgG and IgM antibody in a dental clinic population. Journal of Dental Research, 64(12), 1382–1385.CrossRefGoogle Scholar
  23. Göksay, D., Çotuk, A., & Zeybek, Z. (2008). Microbial contamination of dental unit waterlines in Istanbul, Turkey. Environmental Monitoring and Assessment, 147, 265–269.CrossRefGoogle Scholar
  24. Goncalves, A. B., Paterson, R. R. M., & Lima, N. (2006). Survey and significance of filamentous fungi from tap water. International Journal of Hygiene and Environmental Health, 209, 257–264.CrossRefGoogle Scholar
  25. Gorny, R. L., & Dutkiewicz, J. (2002). Bacterial and fungal aerosols in indoor environment in central and eastern European countries. Annals of Agricultural and Environmental Medicine, 9, 17–23.Google Scholar
  26. Göttlich, E., Van Der Lubbe, W. A., Lange, B., Fiedler, S., Melchert, I., Reifenrath, M., et al. (2002). Fungal flora in groundwater-derived public drinking water. International Journal of Hygiene and Environmental Health, 205, 269–279.CrossRefGoogle Scholar
  27. Greiner, D. (1995). Quantitative analyses of bacterial aerosols in two different dental clinic environments. Applied and Environmental Microbiology, 61(8), 3165–3168.Google Scholar
  28. Hageskal, G., Lima, N., & Skaar, I. (2008). The study of fungi in drinking water. Mycological Research, 1–8.Google Scholar
  29. Haliki-Uztan, A., Ateş, M., Abaci, Ö., Gülbahar, O., Erdem, N., Çiftçi, Ö., et al. (2010). Determination of potential allergenic fungal flora and its clinical reflection in suburban elementary schools in Izmir. Environmental Monitoring and Assessment, 168, 691–702.CrossRefGoogle Scholar
  30. Hallier, C., Williams, D. W., Potts, A. J. C., & Lewis, M. A. O. (2010). A pilot study of bioaerosol reduction using an air cleaning system during dental procedures. British Dental Journal, 209, 1–4.CrossRefGoogle Scholar
  31. Hapcıoglu, B., Yeğenoğlu, Y., Erturan, Z., Nakipoğlu, Y., & İşsever, H. (2005). Heterotrophic bacteria and filamentous fungi isolated from a hospital water distribution system. Indoor Built and Environment, 14(6), 487–493.CrossRefGoogle Scholar
  32. Hedayati, M. T., Mayahi, S., Movahedi, M., & Shokohi, T. (2011). Study on fungal flora of tap water as a potential reservoir of fungi in hospitals in Sari City, Iran. Journal de Mycologie Medicale, 21, 10–14.CrossRefGoogle Scholar
  33. Iatta, R., Napoli, C., Borghi, E., & Montagna, M. T. (2009). Rare mycoses of the oral cavity: a literature epidemiologic. Oral Surgery Oral Medicine Oral Pathology Oral radiology and Endodontology, 108(5), 647–655.CrossRefGoogle Scholar
  34. Kanzler, D., Buzina, W., Paulitsch, A., Haas, D., Platzer, S., Marth, E., et al. (2007). Occurrence and hygienic relevance of fungi in drinking water. Mycoses, 51, 165–169.CrossRefGoogle Scholar
  35. Kim, B. R., Anderson, J. E., Mueller, S. A., Gaines, W. A., & Kendall, A. M. (2002). Literature review—efficacy of various disinfectants against Legionella in water systems. Water Research, 36(18), 4433–4444.CrossRefGoogle Scholar
  36. Kim, K. Y., Park, J. B., Jang, G. Y., Kim, C. N., & Lee, K. J. (2007). Assessment of bioaerosols in the public buildings of Korea. Indoor and Built Environment, 16(5), 465–471.CrossRefGoogle Scholar
  37. Klich, M. A. (2002). Identification of common Aspergillus species. Utrecht: Centraalbureau voor Schimmelcultures.Google Scholar
  38. Kumar, S., Atray, D., Paiwal, D., Balasubramanyam, G., Duraiswamy, P., & Kulkarni, S. (2010). Dental unit waterlines: source of contamination and cross-infection. Journal of Hospital Infection, 74, 99–111.CrossRefGoogle Scholar
  39. Kutoyama, I., Osato, S., Nakajıma, S., Kubota, R., & Ogawa, T. (2010). Environmental monitoring and bactericidal efficacy of chlorine dioxide gas in a dental office. Biocontrol Science, 15(3), 103–109.CrossRefGoogle Scholar
  40. Larranaga, M. D., Karunasena, E., Holder, H. W., Beruvides, M. G., & Straus, D. C. (2011). Improving the quality of the indoor environment utilizing desiccant-assisted heating, ventilating, and air conditioning systems. In N. Mazzeo (Ed.), Chemistry, emission control, radioactive pollution and indoor air quality (pp. 563–595). Croatia: InTech.Google Scholar
  41. Lee, T., Grinshpun, S. A., Martuzevicius, D., Adhikari, A., Crawford, C. M., & Reponen, T. (2006). Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmospheric Environment, 40, 2902–2910.CrossRefGoogle Scholar
  42. Lin, S. M., Svoboda, K. K. H., Giletto, A., Seibert, J., & Puttaiah, R. (2011). Effects of hydrogen peroxide on dental unit biofilms and treatment water contamination. European Journal of Dentistry, 5, 47–59.Google Scholar
  43. Luo, J., Porteous, N., & Sun, Y. (2011). Rechargeable biofilm-controlling tubing materials for use in dental unit water lines. ACS Applied Materials and Interfaces, 3(8), 2895–2903.CrossRefGoogle Scholar
  44. Hi-Media. (2003). The HiMedia manual for microbiology and cell culture laboratory practice (p. 175). Mumbai: HiMediaLaboratories Pvt. Limited.Google Scholar
  45. Martin, M. V. (1987). The significance of the bacterial contamination of dental unit water systems. British Dental Journal, 163, 152–154.CrossRefGoogle Scholar
  46. Messano, G. A., Sofan, A. A. A., & Petti, S. (2013). Quality of air and water in dental healthcare settings during professional tooth cleaning. Acta Stomatologica Naissi, 29, 1230–1235.CrossRefGoogle Scholar
  47. Nikaeen, M., Hatamzadeh, M., Sabzevan, Z., & Zareh, O. (2009). Microbial quality of water in dental unit waterlines. Journal of Research in Medical Sciences, 14(5), 297–300.Google Scholar
  48. Okten, S., & Asan, A. (2012). Airborne fungi and bacteria in indoor and outdoor environment of the pediatric unit of Edirne government hospital. Environmental Monitoring and Assessment, 184(3), 1739–1751.CrossRefGoogle Scholar
  49. Park, D. U., Yeom, J. K., Lee, W. J., & Lee, K. M. (2013). Assessment of the level of airborne bacteria, Gram negative bacteria and fungi in hospital lobbies. International Journal of Environmental Research and Public Health, 10, 541–555.CrossRefGoogle Scholar
  50. Pasquarella, C., Veronesi, L., Castiglia, P., Liguori, G., Montagna, M. T., Napoli, C., et al. (2010). Italian multicenter study on microbial environmental contamination in dental clinics: a pilot study. Science of the Total Environment, 408(19), 4045–4051.CrossRefGoogle Scholar
  51. Pasquarella, C., Veronesi, L., Napoli, C., Castiglia, P., Liguori, G., Rizzetto, R., et al. (2012). Microbial environmental contamination in Italian dental clinics: a multicenter study yielding recommendations for standardized sampling methods and threshold values. Science of the Total Environment, 420, 289–299.CrossRefGoogle Scholar
  52. Pitt, J. I. (2000). A laboratory guide to common Penicillium species (3rd ed.). North Ryde: Food Science Australia.Google Scholar
  53. Porter, S. R. (2002). Prions and dentistry. Journal of the Royal Society Medicine, 95, 178–181.CrossRefGoogle Scholar
  54. Porteus, N. B. (2010). Dental unit waterline contamination—a review. Texas Dental Journal, 127(7), 677–685.Google Scholar
  55. Porteus, N. B., Grooters, A. M., Redding, S. W., Thompson, E. H., Rinaldi, M. G., De Hoog, G. S., et al. (2003). Identification of Exophiala mesophila isolated from treated dental unit waterlines. Journal of Clinical Microbiology, 41(8), 3885–3889.CrossRefGoogle Scholar
  56. Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49(1), 1–7.Google Scholar
  57. Robinson, G. M., Lee, S. W. H., Greenman, J., Salibury, V. C., & Reynolds, D. M. (2010). Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores. Letters in Applied Microbiology, 50, 289–294.CrossRefGoogle Scholar
  58. Shivakumar, K. M., Prashant, G. M., Madhu Shankari, G. S., Subba Reddy, V. V., & Chandu, G. N. (2007). Assessment of atmospheric microbial contamination in a mobile dental unit. Indian Journal of Dental Research, 18(4), 177–180.CrossRefGoogle Scholar
  59. Singh, J. (2005). Toxic moulds and indoor air quality. Indoor and Built Environment, 14(3), 229–234.CrossRefGoogle Scholar
  60. Sungur, E., Minnos, B., & Dogruoz, N. (2008). Isolation of aerobic heterotrophic and anaerobic sulphate reducing bacteria from model water system by filtration method. International University of Fundamental Studies Journal of Biology, 67(1), 33–38.Google Scholar
  61. Szymanska, J. (2005). Evaluation of mycological contamination of dental unit waterlines. Annals of Agricultural and Environmental Medicine, 12, 153–155.Google Scholar
  62. Szymanska, J. (2007). Dental bioaerosol as an occupational hazard in a dentist’s workplace. Annals of Agricultural and Environmental Medicine, 14, 203–207.Google Scholar
  63. Tasic, S., & Tasic Miladinovic, N. (2007). Cladosporium spp.—cause of opportunistic mycoses. Acta Facultatis Meicare Naissensis, 24(1), 15–19.Google Scholar
  64. Thorn, R. M. S., Lee, S. W. H., Robinson, G. M., Greenman, J., & Reynolds, D. M. (2012). Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. European Journal of Clinical Microbiology and Infectious Disease, 31, 641–653.CrossRefGoogle Scholar
  65. Türetgen, I., Göksay, D., & Çotuk, A. (2009). Comparison of the microbial load of incoming and distal outlet waters from dental unit water systems in Istanbul. Environmental Monitoring and Assessment, 158, 9–14.CrossRefGoogle Scholar
  66. Uzel, A., Cogulu, D., & Oncag, O. (2008). Microbiological evaluation and antibiotic susceptibility of dental unit water systems in general dental practice. International Journal of Dental Hygiene, 6, 43–47.CrossRefGoogle Scholar
  67. Walker, J. T., Bradshaw, D. J., Finney, M., Fulford, M. R., Frandsen, E., Qstergaard, E., et al. (2004). Microbiological evaluation of dental unit water systems in general dental practice in Europe. European Journal of Oral Sciences, 112, 412–418.CrossRefGoogle Scholar
  68. Williams, J. F., Molinari, J. A., & Andrews, N. (1996). Microbial contamination of dental unit waterlines: origins and characteristics. Compendium Continuous Education Dentistry, 17, 538–550.Google Scholar
  69. Yang, C. S., & Heinsohn, P. A. (2007). Sampling and analyses of indoor microorganisms. Hoboken: Wiley.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey

Personalised recommendations