Skip to main content

Advertisement

Log in

Physical characterization, magnetic measurements, REE geochemistry and biomonitoring of dust load accumulated during a protracted winter fog period and their implications

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The winter fog in India is a recurrent phenomenon for more than a decade now affecting the entire Himalayan and sub-Himalayan regions covering an area of nearly 500,000 km2. Every winter (December–January), the air and surface transports in cities of northern India (Amritsar, New Delhi, Agra, Gwalior, Kanpur, Lucknow, and Allahabad) are severely disrupted with visibility reduced to <50 m at times. Since dust particles are known to act as nuclei for the fog formation, this study is aimed to carry out physicochemical characterization of the dust particulates accumulated during a protracted fog period from one of the severely fog affected cities of north India (Allahabad; 25°27′33.40″N–81°52′45.47″E). The dust-loaded tree leaves belonging to Ficus bengalensis and Ficus religiosa from 50 different locations between January 24 and 31, 2010 are sampled and characterized. The mass of dust, color, grain shape, size, phase constituents, and mineral magnetic parameters, such as magnetic susceptibility, SIRM, χ fd%, and S-ratio, show minor variation and the regional influence outweighs local anthropogenic contributions. The dust compositions show fractionated rare earth element pattern with a pronounced negative Eu anomaly similar to upper continental crust and further suggesting their derivation from sources located in parts of north and central India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdul-Razzaq, W., & Gautam, M. (2001). Discovery of magnetite in the exhausted material from a diesel engine. Applied Physics Letters, 78, 2018–2019.

    Article  CAS  Google Scholar 

  • Ali, K., Momin, G. A., Tiwari, S., Safai, P. D., Chate, D. M., & Rao, S. P. (2004). Fog and precipitation chemistry at Delhi, North India. Atmospheric Environment, 38, 4215–4222.

    Article  CAS  Google Scholar 

  • Biswas, K. F., Ghauri, B. M., & Husain, L. (2008). Gaseous and aerosol pollutants during fog and clear episodes in South Asian urban atmosphere. Atmospheric Environment, 42, 7775–7785.

    Article  CAS  Google Scholar 

  • Blaha, U., Sapkota, B., Apple, E., Stanjek, H., & Rosler, W. (2008). Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies. Atmospheric Environment, 42, 359–837.

    Article  CAS  Google Scholar 

  • Bloemendal, J., King, J. W., Hall, F. R., & Doh, S. J. (1992). Rock magnetism of Late Neogene and Pleistocene deep sediments: relationship to sediments source, genetic process and sediments lithology. Journal of Geophysical Research, 97, 4361–4375.

    Article  Google Scholar 

  • Cereceda, P., Larrain, H., Osses, P., Farías, M., & Egaña, I. (2008). The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmospheric Research, 7, 312–323.

    Article  Google Scholar 

  • Charlesworth, S. M., & Lees, J. A. (1997). The use of mineral magnetic measurements in polluted urban lakes and deposited dusts, Coventry, UK. Physics and Chemistry of the Earth, 22, 203–206.

    Article  Google Scholar 

  • Chaurasia, S., Sathiyamoorthy, V., Paul Shukla, B., Simon, B., Joshi, P. C., & Pal, P. K. (2011). Night time fog detection using MODIS data over Northern India. Meteorological Applications, 18(4), 483–494.

    Article  Google Scholar 

  • Chen, F. H., Yang, L. P., Wang, J. M., & Zhang, J. W. (1999). Study on atmospheric particulate pollution of Lanzhou using magnetic measurements. Journal of Environmental Science, 11(3), 73–77.

    Google Scholar 

  • Choudhury, S., Rajpal, H., & Saraf, A. K. (2007). Mapping and forecasting of North Indian winter fog: an application of spatial technologies. International Journal of Remote Sensing, 28(16), 3649–3663.

    Article  Google Scholar 

  • Dunlop, D. J. (1973). Superparamagnetic and single domain threshold sizes in magnetite. Journal of Geophysical Research, 78, 780–1793.

    Article  Google Scholar 

  • Dunlop, D. J., & Ozdemir, O. (1997). Rock magnetism: fundamentals and frontiers. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Evans, M. E., & Heller, F. (2003). Environmental magnetism. Principles and applications of enviromagnetics (p. 99). San Diego: Academic Press.

    Google Scholar 

  • Flanders, P. J. (1994). Collection, measurements and analysis of airborne magnetic particulates from pollution in the environment. Journal of Applied Physics, 5, 931–5936.

    Google Scholar 

  • Gautam, P., Blaha, U., & Apple, E. (2005). Magnetic susceptibility y of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu City, Nepal. Atmospheric Environment, 39, 2201–2211.

    Article  CAS  Google Scholar 

  • Goddu, S. R., Appel, E., Jordanova, D., & Wehland, R. (2004). Magnetic properties of road dust from Vishakhapatnam (India)—relationship to industrial pollution and road traffic. Physics and Chemistry of the Earth, 9, 985–995.

    Article  Google Scholar 

  • Hanesch, H., & Scholger, R. (2002). Mapping of heavy metal loadings in soil by means of magnetic susceptibility measurements. Environmental Geology, 42, 857–870.

    Article  CAS  Google Scholar 

  • Hanesch, H., Scholger, R., & Rey, D. (2003). Mapping dust distribution around an industrial site by measuring parameters of tree leaves. Atmospheric Environment, 37, 5125–5133.

    Article  CAS  Google Scholar 

  • Hoffmann, V., Knab, M., & Appel, E. (1999). Magnetic susceptibility mapping of roadside pollution. Journal of Geochemical Exploration, 6, 13–326.

    Google Scholar 

  • http://en.wikipedia.org/wiki/Allahabad. Accessed 20 December 2011.

  • http://IITRoorkee/IITRoorkee . Accessed on 20 December 2012.

  • Jenamani, R. K., & Tyagi, A. (2011). Monitoring fog at IGI Airport and analysis of its runway-wise spatio-temporal variations using meso-RVR network. Current Science, 100, 491–501.

    Google Scholar 

  • Lorenzini, G., Grassi, C., Nali, C., Petiti, A., Loppi, S., & Tognotti, L. (2006). Leaves of Pittosporum toriba as indicators of airborne trace element and PM10 distribution in central Italy. Atmospheric Environment, 40, 4025–4036.

    Article  CAS  Google Scholar 

  • Lu, S. G., Bai, S. Q., & Xue, Q. F. (2007). Magnetic properties as indicators of heavy metals pollution in urban topsoils: a case study from the city of Luoyang, China. Geophysical Journal International, 171, 68–580.

    Article  CAS  Google Scholar 

  • Lu, S. G., Zheng, Y. W., & Bai, S. Q. (2008). A HRTEM/EDX approach to identification of the source of dust particles on urban tree leaves. Atmospheric Environment, 42, 431–6441.

    Article  CAS  Google Scholar 

  • Maher, B. A., Moore, C., & Matzka, J. (2007). Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmospheric Environment, 42, 364–373.

    Article  CAS  Google Scholar 

  • Moreno, E., Sagnotti, L., Turell, J. D., Winkler, A., & Cascella, A. (2003). Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmospheric Environment, 7, 2967–2977.

    Article  CAS  Google Scholar 

  • Muxworthy, A. R., Schmidbauer, E., & Petersen, N. (2002). Magnetic properties and Mossbauer spectra of urban atmospheric particulate matter: a case study from Munich, Germany. Geophysical Journal International, 150, 558–570.

    Article  Google Scholar 

  • Oldfield, F., Hunt, A., Jones, M. D. H., Chester, R., Dearing, J. A., Olsson, L., et al. (1985). Magnetic differentiation of atmospheric dusts. Nature, 317, 516–518.

    Article  CAS  Google Scholar 

  • Pant, V., Deshpande, C. G., & Kamra, A. K. (2010). Changes in concentration and size distribution of aerosols during fog over the south Indian Ocean. Journal of Earth System Science, 119, 479–487.

    Article  CAS  Google Scholar 

  • Pati, J. K., Reimold, W. U., Koeberl, C., & Pati, P. (2008). The Dhala structure, Bundelkhand Craton, Central India—eroded remanant of a large Paleoproterozoic impact structure. Meteoritics and Planetary Science, 43, 1383–1398.

    Article  CAS  Google Scholar 

  • Petrovsky, E., & Ellwood, B. B. (1999). Magnetic monitoring of pollution of air, land and water. In B. A. Maher & R. Thomposon (Eds.), Quaternary climates, environments and magnetism (pp. 279–322). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Power, L. A., Worsley, T. A., & Booth, C. (2009). Magneto-biomonitoring of intra-urban spatial variations of particulate matter using tree leaves. Environmental Geochemistry and Health, 31, 315–325.

    Article  CAS  Google Scholar 

  • Prajapati, S. K., & Tripathi, B. D. (2008). Management of hazardous road derived respirable particulates using magnetic properties of tree leaves. Environmental Monitoring and Assessment, 139, 351–354.

    Article  CAS  Google Scholar 

  • Prasad, A. K., & Singh, R. P. (2007). Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sensing of Environment, 107, 109–119.

    Article  Google Scholar 

  • Rashid, S. A. (2005). The geochemistry of Mesoproterozoic clastic sedimentary rocks from the Rautgara Formation, Kumaun Lesser Himalaya: implications for provenance, mineralogical control and weathering. Current Science, 88(11), 1832–1836.

    CAS  Google Scholar 

  • Raza, M., Khan, A., Bhardwaj, V. R., & Rais, S. (2012). Geochemistry of Mesoproterozoic sedimentary rocks of upper Vindhyan Group, southeastern Rajasthan and implications for weathering history, composition and tectonic setting of continental crust in the northern part of Indian shield. Journal of Asian Earth Sciences, 48, 160–172.

    Article  Google Scholar 

  • Saraf, A. K., Bora, A. K., Das, J., Rawat, V., Sharma, K., & Jain, S. K. (2011). Winter fog over the Indo-Gangetic Plains: mapping and modeling using remote sensing and GIS. Natural Hazards, 201(58), 199–220.

    Article  Google Scholar 

  • Shu, J., Dearing, J. A., Morse, A. P., Yu, L. Z., & Li, C. Y. (2000). Magnetic properties of daily sampled total suspended particulates in Shanghai. Environmental Science & Technology, 34, 2393–2400.

    Article  CAS  Google Scholar 

  • Singh, V. K., Gupta, T., Tripathi, S. N., Jariwala, C., & Das, U. (2011). Experimental study of the effects of environmental and fog condensation nuclei parameters on the rate of fog formation and dissipation using a new laboratory scale fog generation facility. Aerosol and Air Quality Research, 11, 140–154.

    Article  CAS  Google Scholar 

  • Spassov, S., Egli, R., Heller, F., Nourgaliev, D. K., & Hannam, J. (2004). Magnetic quantification of urban pollution sources in atmospheric particulate matter. Geophysical Journal International, 59, 555–564.

    Article  CAS  Google Scholar 

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42, 313–345.

    Article  Google Scholar 

  • Thompson, R., & Oldfield, F. (1986). Environmental magnetism. London: Allen & Unwin. ISBN-0–04–538003, 277.

  • Tiwari, S., Payra, S., Mohan, M., Verma, S., & Bisht, D. S. (2011). Visibility degradation during foggy period due to anthropogenic urban aerosol at Delhi, India. Atmospheric Pollution Research, 2, 116–120.

    Article  Google Scholar 

  • Tomaˇsevi’c, M., Vukmirovic’, Z., Rajsˇic’, S., Tasic’, M., & Stevanovic’, B. (2005). Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere, 61, 753–760.

    Article  CAS  Google Scholar 

  • Wong, C. S. L., Li, X. D., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16.

    Article  CAS  Google Scholar 

  • Yang, L. P., & Chen, F. H. (2002). Chemical characteristics of atmospheric dust in Lanzhou. Acta Scientiae Circumstantiae, 22(4), 499–502.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Deputy Director General (NR), Geological Survey of India, Lucknow for the REE analyses, and the PLANEX, PRL, Department of Space, Government of India, (Ahmedabad) for electron probe microanalyzer analyses used in the present study, respectively. The GIS facilities kindly provided to JKP through the GRBM project, MoE&S, Government of India is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Pati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakarvorty, M., Pati, J.K., Patil, S.K. et al. Physical characterization, magnetic measurements, REE geochemistry and biomonitoring of dust load accumulated during a protracted winter fog period and their implications. Environ Monit Assess 186, 2965–2978 (2014). https://doi.org/10.1007/s10661-013-3594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3594-4

Keywords

Navigation