Skip to main content

Advertisement

Log in

Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The tannery effluents contain a high concentration of chromium (Cr). It drastically reduces the crop yield when used for irrigation purpose. A huge volume of tannery effluents is available as irrigation for crop production. It is negatively affecting germination as well as yield of the crop. The wheat seeds were exposed to five different concentrations of Cr (0, 20, 40, 80, and 100 ppm). In Petri plates, 100 seeds were placed and the germination percent was recorded after 72 hour (h). Root elongation and coleoptile growth were measured at 72, 120, 168, and 240 h. Results showed that the germination percent of the test crop decreased with increasing Cr levels. It decreased by 6, 14, 30, and 37 % under the Cr concentration of 20, 40, 80, and 100 ppm, respectively. The root elongation was more sensitive than the coleoptile growth. The negative correlation was found between Cr levels and root elongation as well as coleoptile growth. These growth parameters were significantly affected up to 80 ppm of Cr level. The wheat growers using tannery effluent as irrigation should be well treated prior to application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari, T., & Singh, M. V. (2002). Thermodynamics of chromium sorption in soil groups of India. Indian Journal of Agricultural Sciences, 72(11), 654–658.

    CAS  Google Scholar 

  • Andjelković, D. H., Andjelković, T. D., Nikolić, R. S., Purenović, M. M., Blagojević, S. D., Bojić, A. L., et al. (2012). Leaching of chromium from chromium contaminated soil—a speciation study and geochemical modelling. Journal of the Serbian Chemical Society, 77(1), 119–129.

    Article  Google Scholar 

  • Arun, K. S., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(739), 753.

    Google Scholar 

  • Babel, S., & Opiso, E. M. (2007). Removal of Cr from synthetic wastewater by sorption into volcanic ash soil. International Journal of Environmental Science and Technology, 4(1), 99–107.

    Article  CAS  Google Scholar 

  • Barcel, J., Poschenrieder, C., & Gunse, J. (1985). Effect of chromium VI on mineral element composition of bush beans. Journal of Plant Nutrition, 8(211), 217.

    Google Scholar 

  • Barcelo, J., & Poschenrieder, C. H. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition, 13(1), 37.

    Article  Google Scholar 

  • Bartlett, R.J., & James, B.R. (1996). Chromium. In Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, CT., & Sumner, M.E. (Eds.), Method of soil analysis. Part 3. Chemical methods (Soil Science Society of America, book series no. 5) (pp. 683–701). Madison: ASA-SSSA.

  • Bingham, F. T., Pereyea, F. J., & Jarrell, W. M. (1986). Metal toxicity to agriculture crops. Metal Ions in Biological Systems, 20, 119–156.

    CAS  Google Scholar 

  • Chang, A. C., Granato, T. C., & Page, A. L. (1992). A methodology for establishing phytotoxicity criteria for chromium, copper, nickel and zinc in agricultural land application of municipal sewage sludges. Journal Environmental Quality, 21, 521–536.

    Google Scholar 

  • Dakiky, M., Khami, A., Manassra, A., & Mereb, M. (2002). Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6(4), 533–540.

    Article  CAS  Google Scholar 

  • Dey, S. K., Jena, P. P., & Kundu, S. (2009). Antioxidative efficiency of Triticum aestivum L. exposed to chromium stress. Journal of Environmental Biology, 30(4), 539–544.

    CAS  Google Scholar 

  • Dube, B. K., Tewari, K., Chatterjee, J., & Chatterjee, C. (2003). Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere, 53(9), 1147–1153.

    Article  CAS  Google Scholar 

  • Jain, R., Srivastava, S., Madan, V. K., & Jain, R. (2000). Influence of chromium on growth and cell division of sugarcane. Indian Journal of Plant Physiology, 5(3), 228–231.

    CAS  Google Scholar 

  • Jun, R., Ling, T., & Guanghua, Z. (2009). Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. International Journal of Environmental Science and Technology, 6(4), 571–578.

    Article  CAS  Google Scholar 

  • Kar, D., Sur, P., Mandal, S. K., Saha, T., & Kole, R. K. (2008). Assessment of heavy metal pollution in surface water. Journal of Environmental Science and Technology, 5(1), 119–124.

    CAS  Google Scholar 

  • Nath, K., Saini, S., & Sharma, Y. K. (2005). Chromium in tannery industry effluent and its effect on plant metabolism and growth. Journal of Environmental Biology, 26(2), 197–204.

    CAS  Google Scholar 

  • Ogundiran, O. O., & Afolabi, T. A. (2008). Assessment of the physicochemical parameters and heavy metals’ toxicity of leachates from municipal solid waste open dumpsite. Journal of Environmental Science and Technology, 5(2), 243–250.

    CAS  Google Scholar 

  • Oliveira, H. (2012). Chromium as an environmental pollutant: insights on induced plant toxicity. Journal of Botany. doi:10.1155/2012/375843.

    Google Scholar 

  • López-Luna, J. L., Gonzalez-Chavez, M. C., Esparza-Garcia, F. J., & Rodriguez-Vazquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials, 163(2–3), 829–834.

    Article  Google Scholar 

  • Parmar, N. G., Vithalani, S. D., & Chanda, S. V. (2002). Alteration in growth and peroxidase activity by heavy metals in Phaseolus seedlings. Acta Physiologia Plantarum, 24(1), 89–95.

    Article  CAS  Google Scholar 

  • Peralta, J. R., Gardea-Torresdey, J. L., & Tiemann, K. J. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and Toxicology, 66(6), 727–734.

    CAS  Google Scholar 

  • Saha, J. K., Panwar, N., & Singh, M. V. (2013). Risk assessment of heavy metals in soil of a susceptible agro-ecological system amended with municipal solid waste compost. Journal of the Indian Society of Soil Science, 61(1), 15–22.

    CAS  Google Scholar 

  • Sahu, R. K., Katiyar, S., Yadav, A. K., Kumar, N., & Srivastava, J. (2008). Toxicity assessment of industrial effluent by bioassays. CLEAN Soil Air Water, 36(5–6), 517–520.

    Article  CAS  Google Scholar 

  • Scoccianti, V., Crinelli, R., Tirillini, B., Mancinelli, V., & Speranza, A. (2006). Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere, 64(10), 1695–1703.

    Article  CAS  Google Scholar 

  • Shanker, A. K., Cervantes, C., Tavera, H. L., & Avudainayagam, S. (2005). Chromium toxicity in plants. Journal of Environment International, 31(739), 753.

    Google Scholar 

  • Sharma, D. C., & Forster, C. F. (1995). Column studies into the adsorption of chromium (VI) using sphagnum moss peat. Bioresource Technology, 52(261), 267.

    Google Scholar 

  • Shrestha, R., Fischer, R., & Sillanpää, M. (2007). Investigations on different positions of electrodes and their effects on the distribution of Cr at the water sediment interface. International Journal of Environmental Science and Technology, 4(4), 413–420.

    Article  CAS  Google Scholar 

  • Singh, A. P., & Rao, D. P. (2013). Assessment of tannery effluent: a case study of Kanpur in India. European Chemical Bulletin, 2(7), 461–464.

    CAS  Google Scholar 

  • Srivastava, S., & Thakur, I. S. (2006). Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biology & Biochemistry, 38(7), 1904–1911.

    Article  CAS  Google Scholar 

  • Sundaramoorthy, P., Chidambaram, A., Ganesh, K. S., Unnikannan, P., & Baskaran, L. (2010). Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biologies, 333(8), 597–607.

    Article  CAS  Google Scholar 

  • UNIDO (2002). Industrial policy and the environment in Pakistan (NC/PAK/97/018). Vienna: United Nations Industrial Development Organization (UNIDO). 11 Dec 2000.

  • UNIDO (2005). Cost of tanned waste treatment, 15th session of the leather and leather products industry panel Leon, Mexico. Vienna: United Nations Industrial Development Organization.

  • Venkateswaran, P., Vellaichamy, S., & Palanivelu, K. (2007). Speciation of heavy metals in electroplating industry sludge and wastewater residue using inductively coupled plasma. International Journal of Environmental Science and Technology, 4(4), 497–504.

    Article  CAS  Google Scholar 

  • Wong, J. W. C., Lai, K. M., Su, D. S., & Fang, M. (2001). Availability of heavy metals for Brassica chinensis grown in an acidic loamy soil amended with a domestic and an industrial sewage sludge. Water, Air, and Soil Pollution, 128(3–4), 339–353.

    Article  CAS  Google Scholar 

  • Zayed, A. M., & Terry, M. (2003). Chromium in the environment: factors affecting biological remediation. Plant and Soil, 249(1), 139–156.

    Article  CAS  Google Scholar 

  • Zeid, M. (2001). Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biologia Plantarum, 44(1), 111–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Dotaniya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dotaniya, M.L., Das, H. & Meena, V.D. Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods. Environ Monit Assess 186, 2957–2963 (2014). https://doi.org/10.1007/s10661-013-3593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3593-5

Keywords

Navigation