Skip to main content

Advertisement

Log in

Accumulation and risks of polycyclic aromatic hydrocarbons and trace metals in tropical urban soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study deals with the combined contribution of polycyclic aromatic hydrocarbons (PAHs) and metals to health risk in Delhi soils. Surface soils (0–5 cm) collected from three different land-use regions (industrial, flood-plain and a reference site) in Delhi, India over a period of 1 year were characterized with respect to 16 US Environmental Protection Agency priority PAHs and five trace metals (Zn, Fe, Ni, Cr and Cd). Mean annual ∑16PAH concentrations at the industrial and flood-plain sites (10,893.2 ± 2826.4 and 3075.4 ± 948.7 μg/kg, respectively) were ~15 and ~4 times, respectively, higher than reference levels. Significant spatial and seasonal variations were observed for PAHs. Toxicity potentials of industrial and flood-plain soils were ~88 and ~8 times higher than reference levels. Trace metal concentrations in soils also showed marked dependencies on nearness to sources and seasonal effects. Correlation analysis, PAH diagnostic ratios and principal component analysis (PCA) led to the identification of sources such as coal and wood combustion, vehicular and industrial emissions, and atmospheric transport. Metal enrichment in soil and the degree of soil contamination were investigated using enrichment factors and index of geoaccumulation, respectively. Health risk assessment (incremental lifetime cancer risk and hazard index) showed that floodplain soils have potential high risk due to PAHs while industrial soils have potential risks due to both PAHs and Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009–1017.

    Article  CAS  Google Scholar 

  • Agarwal, T., Khillare, P. S., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous Materials, 163(2–3), 1033–1039.

    Article  CAS  Google Scholar 

  • European Commission (2001). Ambient Air Pollution by Polycyclic Aromatic Hydrocarbons (PAH). Position Paper European Commission. http://ec.europa.eu/environment/air/pdf/pp_pah.pdf.

  • Awashthi, S. K. (2000). Prevention of Food Adulteration Act No. 37 of 1954. Central and State Rules as Amended for 1999 (3rd ed.). New Delhi: Ashoka Law House.

    Google Scholar 

  • Birmili, W., Allen, A. G., Bary, F., & Harrison, R. M. (2006). Trace metal concentrations of water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental Science and Technology, 40, 1144–1153.

    Article  CAS  Google Scholar 

  • Bixiong, Y., Zhang, Z., & Mao, T. (2006). Pollution sources identification of polycyclic aromatic hydrocarbons of soils in Tianjin area, China. Chemosphere, 64, 525–534.

    Article  Google Scholar 

  • Bozlaker, A., Muezzinoglu, A., & Odabasi, M. (2008). Atmospheric concentrations, dry deposition and air–soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. Journal of Hazardous Materials, 153(3), 1093–1102.

    Article  CAS  Google Scholar 

  • Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 398–411.

    Article  Google Scholar 

  • Bucheli, T. D., Blum, F., Desaules, A., & Gustafsson, O. (2004). Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere, 56(11), 1061–1076.

    Article  CAS  Google Scholar 

  • Canfield, R. L., Henderson, C. R., Cory-Slechta, D. A., Cox, C., Jusko, T. A., & Lanphear, B. P. (2003). Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. The New England Journal of Medicine, 348, 1517–1521.

    Article  CAS  Google Scholar 

  • Chen, S. C., & Liao, C. M. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment, 366, 112–123.

    Article  CAS  Google Scholar 

  • Dasaram, B., Satyanarayanan, M., Sudarshan, V., & Keshav Krishna, A. (2011). Assessment of soil contamination in Patancheru Industrial Area, Hyderabad, Andhra Pradesh, India. Research Journal of Environmental and Earth Sciences, 3(3), 214–220.

    CAS  Google Scholar 

  • Dragovic, S., Mihailovic, N., & Gajic, B. (2008). Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere, 72(3), 491–495. doi:10.1016/j.chemosphere.2008.02.063.

    Article  CAS  Google Scholar 

  • Duval, M. M., & Friedlander, S. K. (1981). Source resolution of polycyclic aromatic hydrocarbons in Los Angeles atmosphere – application of CMB with first order decay. Washington, DC: USEPA. EPA-600/2-81-161.

    Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmospheric Environment, 39, 4501–4512.

    Article  CAS  Google Scholar 

  • Fishbein, L. (1981). Sources, transport and alterations of metal compounds: an overview. I. Arsenic, Beryllium, Cadmium, Chromium, and Nickel. Environmental Health Perspectives, 40, 43–64.

    Article  CAS  Google Scholar 

  • Grygar, T. M., Elznicova, J., & Vadinova, N. (2013). Natural and anthropogenic enrichments of heavy metals in modern soils: the case study in the Jizera floodplain, Czech Republic. Geophysical Research Abstracts, 15, EGU2013-3208-1, European Geophysical Union.

    Google Scholar 

  • Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37(38), 5307–5317.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric Polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science and Technology, 30, 825–832.

    Article  CAS  Google Scholar 

  • Hautala, E. L., Rekila, R., Tarhanen, J., & Ruuskanen, J. (1995). Deposition of motor vehicle emissions and winter maintenance along roadside assessed by snow analyses. Environmental Pollution, 87(1), 45–49.

    Article  CAS  Google Scholar 

  • Hong, H. S., Yin, H. L., Wang, X. H., & Ye, C. X. (2007). Seasonal variation of PM10-bound PAHs in the atmosphere of Xiamen, China. Atmospheric Research, 85, 429–441.

    Article  CAS  Google Scholar 

  • HPA. (2008-2009). http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1236757318774.

  • HPA. (2011). http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1198504591766.

  • IARI (Indian Agricultural Research Institute). (2013). Available online at http://www.iari.res.in/index.php?option=com_content&view=article&id=402&Itemid=1152.

  • International Agency for Research on Cancer (IARC). (2004). http://www.iarc.fr.

  • International Agency for Research on Cancer (IARC). (2009). IARC monographs on the evaluation of carcinogenic risks to humans. Vols. 1–97 (until 2009). Lyon: IARC Publications.

    Google Scholar 

  • Jones, K. C. (1991). Contaminant trends in soils and crops. Environmental Pollution, 69, 311–325.

    Article  CAS  Google Scholar 

  • Jones, K. C., Stratford, J. A., Tidridge, P., Waterhouse, K. S., & Johnston, A. E. (1989). Polynuclear aromatic hydrocarbons in an agricultural soil: long-term changes in profile distribution. Environmental Pollution, 56, 337–351.

    Article  CAS  Google Scholar 

  • Kaushik, A., Kansal, A., Santosh, Meena, Kumari, S., & Kaushik, C. P. (2009). Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. Journal of Hazardous Materials, 164, 265–270.

    Article  CAS  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.

    Article  CAS  Google Scholar 

  • Khillare, P. S., Jyethi, D. S., & Sarkar, S. (2012). Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants. Food and Chemical Toxicology, 50, 1642–1652.

    Article  CAS  Google Scholar 

  • Kipopoulou, A. M., Manoli, E., & Samara, C. (1999). Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environmental Pollution, 106(3), 369–380.

    Article  CAS  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2005). Heavy metal distribution and contamination in soils of Thane–Belapur industrial development area, Mumbai, Western India. Environmental Geology, 47, 1054–1061.

    Article  CAS  Google Scholar 

  • Kulkarni, P., & Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment, 34(17), 2785–2790.

    Article  CAS  Google Scholar 

  • Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science and Technology, 37(9), 1873–1881.

    Article  CAS  Google Scholar 

  • Lee, W. M. G., & Tsay, L. Y. (1994). The partitioning model of polycyclic aromatic hydrocarbon between gaseous and particulate (PM10) phases in urban atmosphere with high humidity. Science of the Total Environment, 145, 163–171.

    Article  CAS  Google Scholar 

  • Liao, C. M., & Chiang, K. C. (2006). Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere, 63, 1610–1619.

    Article  CAS  Google Scholar 

  • Lin, C. C., Chen, S. I., Huang, K. L., Hwang, W. I., Chang-Chien, G. P., & Lin, W. Y. (2005). Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science and Technology, 39, 8113–8122.

    Article  CAS  Google Scholar 

  • Liu, C. H., Tian, F. L., Chen, J. W., Li, X. H., & Qiao, X. L. (2010). A comparative study on source apportionment of polycyclic aromatic hydrocarbons in sediments of the Daliao River, China: positive matrix factorization and factor analysis with non-negative constraints. Chinese Science Bulletin, 55, 915–920. doi:10.1007/s11434-010-0057-y.

    Article  CAS  Google Scholar 

  • Loska, K., Cebula, J., Pelczar, J., Wiechula, D., & Kwapulinski, J. (1997). Use of enrichment and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu and Ni in the Rybnik water reservoir in Poland. Water, Air, and Soil Pollution, 93, 347–365.

    CAS  Google Scholar 

  • Loska, K., Cebula, J., & Wiechuła, D. (2002). Analysis of physicochemical properties of bottom sediments from the backwater area of Rybnik dam reservoir in aspects of their use for non-industrial purposes (in Polish). Gosp Wod, 7, 292–294.

    Google Scholar 

  • Loska, K., Wiechula, D., Barska, B., Cebula, E., & Chojnecka, A. (2003). Assessment of arsenic enrichment of cultivated soils in Southern Poland. Polish Journal of Environmental Studies, 12(2), 187–192.

    CAS  Google Scholar 

  • Maliszewska-Kordybach, B., Smreczak, B., Klimkowicz-Pawlas, A., & Terelak, H. (2008). Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere, 73(8), 1284–1291.

    Article  CAS  Google Scholar 

  • Masih, A., & Taneja, A. (2006). Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere, 65(3), 449–456.

    Article  CAS  Google Scholar 

  • Meharg, A., Wright, J., Dyke, H., & Osborn, D. (1998). Polycyclic aromatic hydrocarbon (PAH) dispersion and deposition to vegetation and soil following a large scale chemical fire. Environmental Pollution, 99(1), 29–36.

    Article  CAS  Google Scholar 

  • Mehra, A., Farago, M. E. F., & Banerjee, D. K. (1998). Impact of fly ash from coal-fired power stations in Delhi, with particular reference to metal contamination. Environmental Monitoring and Assessment, 50, 15–35.

    Article  CAS  Google Scholar 

  • Muller, G. (1981). The heavy metal pollution of the sediments of Neckars and its tributary: a stocktaking. Chemische Zeit, 105, 157–164.

    Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132(1), 1–11.

    Article  CAS  Google Scholar 

  • Nawrot, T. S., Kunzli, N., Sunyer, J., Shi, T., Moreno, T., Viana, M., et al. (2009). Oxidative properties of ambient PM2.5 and elemental composition: heterogeneous associations in 19 European cities. Atmospheric Environment, 43, 4595–4602.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134–139.

    Article  CAS  Google Scholar 

  • Odabasi, M., Vardar, N., Sofuoglu, A., Tasdemir, Y., & Holsen, T. M. (1999). Polycyclic aromatic hydrocarbons [PAHs] in Chicago air. Science of the Total Environment, 227, 57–67.

    Article  CAS  Google Scholar 

  • Orecchio, S. (2010). Assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of a Natural Reserve (Isola delle Femmine) (Italy) located in front of a plant for the production of cement. Journal of Hazardous Materials, 173(1–3), 358–368.

    Article  CAS  Google Scholar 

  • Pacyna, J. M., & Pacyna, E. G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4), 269–298.

    Article  CAS  Google Scholar 

  • Planning Department. (2006). Economic survey of Delhi 2005–2006. Government of NCT of Delhi. http://delhi.gov.in/wps/wcm/connect/DoIT_Planning/planning/economic+survey+of+dehli/content3/industrial+development.

  • Ray, S., Khillare, P. S., Agarwal, T., & Shridhar, V. (2008). Assessment of PAHs in soil around the International Airport in Delhi, India. Journal of Hazardous Materials, 156(1–3), 9–16.

    Article  CAS  Google Scholar 

  • Rost, H., & Loibner, A. P. (2002). Behavior of PAHs during cold storage of historically contaminated soil samples. Chemosphere, 49, 1239–1246.

    Article  CAS  Google Scholar 

  • Samara, C., Kouimtzis, T., & Katsoulos, G. (1994). Characterization of airborne particulate matter in Thessaloniki, Greece: Part III. Comparison of two multivariate modeling approaches for the source apportionment of heavy metal concentrations within total suspended particles. Toxicological and Environmental Chemistry, 44, 147–160.

    Article  CAS  Google Scholar 

  • Sandroni, V., Smith, C. M. M., & Donovan, A. (2003). Microwave digestion of sediment, soils and urban particulate matter for trace metal analysis. Talanta, 60(4), 715–723.

    Article  CAS  Google Scholar 

  • Smith, D. J. T., Edelhauser, E. C., & Harrison, R. M. (1995). Polynuclear aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan. Environmental Technology, 16, 45–53.

    Article  CAS  Google Scholar 

  • Srinivasa, G. S., Ramakrishna Reddy, M., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.

    Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611.

    Article  CAS  Google Scholar 

  • Transport Department. (2012). Total vehicles registered up to 30-Sep-2012. Government of NCT of Delhi. Available online at http://www.delhi.gov.in/wps/wcm/connect/doit_transport/Transport/Home/Vehicle+Registration/Total+Vehicle+Registered.

  • Tsai, P. J., Shih, T. S., Chen, H. L., Lee, W. J., Lai, C. H., & Liou, S. H. (2004). Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmospheric Environment, 38, 333–343.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedephol, K. H. (1961). Distribution of the elements in some major units of the earth crust. Bulletin of Geological Society of America, 72, 175–192.

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency). (1989). Risk Assessment Guidance for Superfund: vol. I, Human health evaluation manual. EPA/540/1-89/002. Office of Solid Waste and Emergency Response. US Environmental Protection Agency. Washington, D.C. http://www.epa.gov/superfund/programs/risk/ragsa/index.htm.

  • USEPA (US Environmental Protection Agency). (1991). Risk Assessment Guidance for Superfund, vol. I, Human health evaluation manual. Part B. Development of Risk-based Preliminary Remediation Goals (Interim), PB92-963333. Publication 9285.7-01B. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.

  • USEPA (US Environmental Protection Agency). (1996). Soil Screening Guidance: Technical Background Document. EPA/540/R-95/128. Office of Solid Waste and Emergency Response. U.S. Environmental Protection Agency. Washington, D.C. http://www.epa.gov/superfund/resources/soil/toc.htm#pl.

  • USEPA (US Environmental Protection Agency). (2001). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. Office of Solid Waste and Emergency Response. US Environmental Protection Agency. Washington, DC, Available from: http://www.epa.gov/superfund/resources/soil/ssgmarch01.pdf.

  • USEPA (US Environmental Protection Agency). (2002). Polycyclic organic matter. United States Environmental Protection Agency. Available online at http://www.epa.gov/ttn/atw/hlthef/polycycl.html.

  • Voutsa, D., & Samara, C. (1998). Dietary intake of trace elements and polycyclic aromatic hydrocarbons via vegetables grown in an industrial Greek area. Science of the Total Environment, 218, 203–216.

    Article  CAS  Google Scholar 

  • Wang, Z. (2007). Regional study on soil polycyclic aromatic hydrocarbons in Liaoning: patterns, sources and cancer risks. Dalian: Dalian University of Technology.

    Google Scholar 

  • Wang, Z., Chen, J., Qiao, X., Yang, P., Tian, F., & Huang, L. (2007). Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian, China. Chemosphere, 68(5), 965–971.

    Article  CAS  Google Scholar 

  • Wang, W., Huang, M., Kang, Y., Wang, H., Leung, A., Cheung, K. C., et al. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Science of the Total Environment, 409, 4519–4527.

    Article  CAS  Google Scholar 

  • Wild, S. R., & Jones, K. C. (1992). Organic chemicals in the environment: polynuclear aromatic hydrocarbon uptake by carrots grown in biosolids-amended soil. Journal of Environmental Quality, 21, 217–225.

    Article  CAS  Google Scholar 

  • Wild, S. R., Berrow, M. L., McGrath, S. P., & Jones, K. C. (1992). Polynuclear aromatic hydrocarbons in crops from long term field experiments amended with sewage sludge. Environmental Pollution, 76(1), 25–32.

    Article  CAS  Google Scholar 

  • Yan, W., Chi, J., Wang, Z., Huang, W., & Zhang, G. (2009). Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China. Environmental Pollution, 157(6), 1823–1830.

    Article  CAS  Google Scholar 

  • Yang, S. Y. N., Connell, D. W., Hawker, D. W., & Kayal, S. I. (1991). Polycyclic aromatic hydrocarbons in air, soil and vegetation in the vicinity of an urban roadway. Science of the Total Environment, 102, 229–240.

    Article  CAS  Google Scholar 

  • Yang, G. P., Liu, X. L., & Zhang, J. W. (1998). Distribution of dibenzothiophene in the sediments of the South China Sea. Environmental Pollution, 101, 405–414.

    Article  CAS  Google Scholar 

  • Yang, Y., Cajthaml, T., & Hofmann, T. (2008). PAH desorption from river floodplain soils using supercritical fluid extraction. Environmental Pollution, 156, 745–752.

    Article  CAS  Google Scholar 

  • Yaylali-Abanuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99, 82–92.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestrec, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Zhang, H. B., Luo, Y. M., Wong, M. H., Zhao, Q. G., & Zhang, G. L. (2006). Distributions and concentrations of PAHs in Hong Kong soils. Environmental Pollution, 141(1), 107–114.

    Article  CAS  Google Scholar 

  • Zhang, L., Bai, Z., You, Y., Wu, J., Feng, Y., & Zhu, T. (2009). Chemical and stable carbon isotopic characterization for PAHs in aerosol emitted from two indoor sources. Chemosphere, 75, 453–461.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the anonymous reviewers for their comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Khillare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khillare, P.S., Hasan, A. & Sarkar, S. Accumulation and risks of polycyclic aromatic hydrocarbons and trace metals in tropical urban soils. Environ Monit Assess 186, 2907–2923 (2014). https://doi.org/10.1007/s10661-013-3589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3589-1

Keywords