Skip to main content

Advertisement

Log in

CH4 continuous measurements in the upper Spanish plateau

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Continuous methane, CH4, concentrations were measured in a rural area of the upper Spanish plateau from June 2010 to May 2012 by cavity ring-down spectroscopy technique. The results obtained have proven the local impact of anthropogenic nearby sources on CH4 concentrations, and evidence a significant influence on the overall mean, averaged daily and seasonal patterns recorded at the measuring site. The positive anomalies in CH4 concentrations, statistically significant at 95 %, in the southeast sector, defined here as ESE, SE, SSE and S sectors, have been attributed to the contribution of the Valladolid urban plume and the urban landfill. Based on this finding, CH4 background levels were associated to the concentrations recorded in the remaining un-disturbed sectors. CH4 means of the overall data set, the southeast sector and background sectors yielded average means of 1,894.1, 1,927.9 and 1,887.1 ppb, respectively. The diurnal and seasonal patterns of the overall data set and background concentrations have shown that CH4 concentrations are mainly dominated by its reaction with OH radicals. Maximum hourly concentrations were reached during night-time and early morning, 5–7 h, whereas minimum concentrations were recorded at 16 h. Maximum and minimum monthly means were recorded in January and July, respectively. The diurnal and seasonal amplitudes, namely, peak-to-peak means, of background concentrations were 25.1 and 48.1 ppb, respectively. These values were significantly lower than those obtained for the overall data set, 42.9 and 58.1 ppb, revealing the significant role of local influences on CH4 concentrations despite the low frequency of southeast winds recorded at the measuring site, 16.9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvalá, P. C., Boian, C., & Kirchhoff, V. W. J. (2004). Measurements of CH4 and CO during ship cruises in the South Atlantic. Atmospheric Environment, 38, 4583–4588.

    Article  CAS  Google Scholar 

  • Artuso, F., Chamard, P., Piacentino, S., di Sarra, A., Meloni, D., Monteleone, F., et al. (2007). Atmospheric methane in the Mediterranean: analysis of measurements at the island of Lampedusa during 1995–2005. Atmospheric Environment, 41, 3877–3888.

    Article  CAS  Google Scholar 

  • Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., The, Y. A., Silver, W., et al. (2012). The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agricultural and Forest Meteorology, 153, 177–187.

    Article  Google Scholar 

  • Balzani, L., Henne, J. M., Legreid, S. G., Staehelin, J., Reimann, S., Prévôt, A. S. H., et al. (2008). Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m asl). Journal of Geophysical Research, 113, D22305. doi:10.1029/2007JD009751.

    Article  CAS  Google Scholar 

  • Belikov, B., Brenninkmeijer, C. A. M., Elansky, N. F., & Ral’ko, A. A. (2006). Methane, carbon monoxide, and carbon dioxide concentrations measured in the atmospheric surface layer over continental Russia in the TROICA Experiments. Izvestiya Atmospheric Oceanic Physics, 42, 46–59.

    Article  Google Scholar 

  • Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., et al. (2006). Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439–443.

    Article  CAS  Google Scholar 

  • Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E. G., Carouge, C., et al. (2010). Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics, 11, 3689–3700.

    Article  CAS  Google Scholar 

  • Butchwitz, M., de Beek, R., Nöelm, S., Burrowsm, J. P., Bovensmann, H., Bremer, H., et al. (2005). Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set. Atmospheric Chemistry and Physics, Discussion, 5, 1943–1971.

    Article  Google Scholar 

  • Conrad, R. (2009). The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1(5), 285–292.

    Article  CAS  Google Scholar 

  • Crosson, E. R. (2007). A field- deployable, high accuracy atmospheric multi-gas monitor based on cavity ring-down spectroscopy. Symposium on Air Quality Measurement Methods and Technology. Air Waste Manage. Assoc., San Francisco, CA.

  • Crosson, E. R. (2008). A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide and water vapour. Applied Physics B, 92, 403–408.

    Article  CAS  Google Scholar 

  • Dlugokencky, E. J., Masarie, K. A., Tans, P. P., Conway, T. J., & Xiongs, X. (1997). Is the amplitude of the methane seasonal cycle changing? Atmospheric Environment, 31, 21–26.

    Article  Google Scholar 

  • Dlugokencky, E. J., Bruhwiler, L. M. P., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., et al. (2009). Observational constraints on recent increases in the atmospheric CH4 burden. Geophysical Research Letters, 36, L18803. doi:10.1029/2009GL039780.

    Article  CAS  Google Scholar 

  • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In S. Solomon et al. (Eds.), Climate Change 2007: The Physical Science Basis. Cambridge: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • García, M. A., Sánchez, M. L., Pérez, I. A., & de Torre, B. (2008). Continuous carbon dioxide measurements in a rural area in the upper Spanish plateau. Journal of the Air & Waste Management Association, 58, 940–946.

    Article  CAS  Google Scholar 

  • García, M. A., Sánchez, M. L., & Pérez, I. (2012). Differences between carbon dioxide levels over suburban and rural sites in Northern Spain. Environmental Science and Pollution Research, 19, 432–439.

    Article  CAS  Google Scholar 

  • Gerilowski, K. (2011). Interactive comment on “Eddy covariance flux measurements confirm extreme CH4 emissions from a Swiss hydropower reservoir and resolve their short-term variability” by W. Eugster et al. Biogeosciences Discuss, 8, C1834–C1835.

    Google Scholar 

  • GLOBALVIEW-CH4 (2009). Cooperative Atmospheric Data Integration Project - Methane. CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/ch4/GLOBALVIEW]

  • Gómez-Pelaez, A. J., Ramos, R., Cuevas, E., & Gomez-Trueba, V. (2010). 25 years of Continuous CO2 and CH4 measurements at Izaña Global GAW mountain station: annual cycles and interannual trends. Proceedings of the “Symposium on Atmospheric Chemistry and Physics at Mountain Sites”, Interlaken, Switzerland: 157–159.

  • Howarth, R. W., Santoro, R., & Ingraffea, A. (2011). Methane and the greenhouse-gas footprint of natural gas from shale formations. Climatic Change. doi:10.1007/s10584-011-0061-5.

    Google Scholar 

  • IPCC. (2001). Climate Change 2001: The Scientific Basis. In J. H. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Cambridge University Press. New York: USA.

    Google Scholar 

  • IPCC (2007). Summary for Policymakers, in Solomon, S. et al. (Eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Khalil, M. A. K., & Rasmussen, R. A. (1994). Global emissions of methane during the last several centuries. Chemosphere, 29, 833–842.

    Article  CAS  Google Scholar 

  • Kong, S., Lu, B., Han, B., Bai, Z., Xu, Z., You, Y., et al. (2010). Seasonal variation analysis of atmospheric CH4, N2O and CO2 in Tianjin offshore area. Science China Earth Sciences, 53, 1205–1215.

    Article  CAS  Google Scholar 

  • Lelieveld, J. (2006). Climate change: a nasty surprise in the greenhouse. Nature, 443, 405–406.

    Article  CAS  Google Scholar 

  • Lelieveld, J., Crutzen, P. J., & Dentener, F. J. (1998). Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, B50, 128–150.

    Article  Google Scholar 

  • Meirink, J. F., Eskes, H. J., & Goede, A. P. H. (2005). Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling. Atmospheric Chemistry and Physics Discussion, 5, 9405–9445.

    Article  Google Scholar 

  • Mu, Z., Kimura, S. D., & Hatano, R. (2006). Estimation of global warming potencial from upland cropping systems in central Hokkaido, Japan. Soil Science and Plant Nutrition, 52, 371–377.

    Article  Google Scholar 

  • O’Connor, F. M., Boucher, O., Gedney, N., Jones, C-D., Folberth, G.A. Coppell, R. et al. (2010). Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Reviews of Geophysics, 48, RG4005, 33 pp, doi:10.1029/2010RG000326

  • Padhy, P. K., & Varshney, C. K. (2000). Ambient methane levels in Delhi. Chemosphere-Global Change Science, 2, 185–190.

    Article  CAS  Google Scholar 

  • Patra, P. K., Takigawa, M., & Ishijima, K. (2009). Growth rate, seasonal, synoptic, diurnal variations and budget of methane in the lower atmosphere. Journal of the Meteorology Society of Japan, 87, 635–663.

    Article  Google Scholar 

  • Pérez, I. A., García, M. A., Sánchez, M. L., & de Torre, B. (2008). Description of atmospheric variables measured with a RASS sodar: cycles and distribution functions. Journal of Wind Engineering & Industrial Aerodynamics, 96, 436–453.

    Article  Google Scholar 

  • Pérez, I. A., Sánchez, M. L., García, M. A., & de Torre, B. (2009a). CO2 transport by urban plume in the upper Spanish plateau. Science of the Total Environment, 407, 4934–4938.

    Article  CAS  Google Scholar 

  • Pérez, I. A., Sánchez, M. L., García, M. A., & de Torre, B. (2009b). Daily and annual cycle of CO2 concentration near the surface depending on boundary layer structure at a rural site in Spain. Theoretical and Applied Climatology, 98, 269–277.

    Article  Google Scholar 

  • Rella, C. H. (2010). Accurate Greenhouse Gas Measurements in Humid Gas Streams Using the Picarro G1301 Carbon Dioxide/Methane/Water Vapor Gas Analyzer, Sunnyvale, CA.

  • Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L., Huang, J., et al. (2008). Renewed growth of atmospheric methane. Geophysical Research Letters, 35, L22805. doi:10.1029/2008GL036037.

    Article  Google Scholar 

  • Ringeval, B., Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Prigent, C., Papa, F., & Rossow, W.B. (2010). An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Global Biogeochemical Cycles, 24, GB2003, 12 pp.

  • Sánchez, M. L., García, M. A., Pérez, I. A., & de Torre, B. (2008). Evaluation of surface ozone measurements during 20002005 at a rural area in the upper Spanish plateau. Journal of Atmospheric Chemistry, 60, 137–152.

    Article  CAS  Google Scholar 

  • Sánchez, M. L., Pérez, I. A., & García, M. A. (2010). Study of CO2 variability at different temporal scales recorded in a rural Spanish site. Agricultural and Forest Meteorology, 150, 1168–1173.

    Article  Google Scholar 

  • Sasakawa, M., Shimoyama, K., Machida, T., Tsuda, N., Suto, H., Arshinov, M., et al. (2010). Continuous measurements of methane from a tower network over Siberia. Tellus, 62B, 403–416.

    Article  CAS  Google Scholar 

  • Topp, E., & Pattey, E. (1997). Soils as sources and sinks for atmospheric methane. Canadian Journal of Soil Science, 77, 167–178.

    Article  CAS  Google Scholar 

  • Veenhuysen, D., Vermeulen, A. T., Hofschreuder, P., & Van Den Bulk, W. C. M. (1998). Methane emission of the Amsterdam urban area. Water, Air, & Soil Pollution, 107, 321–333.

    Article  CAS  Google Scholar 

  • Villani, M. G., Bergamaschi, P., Krol, M., Meirink, J. F., & Dentener, F. (2010). Inverse modeling of European CH4 emissions: sensitivity to the observational network. Atmospheric Chemistry and Physics, 10, 1249–1267.

    Article  CAS  Google Scholar 

  • Wastine, B., Kaiser, C., Vuillemin, C., Lavric, J.V., Schmidt, M., Ramonet, M., McGovern, F., O'Brien, P., Dodd, D., O'Doherty, S., & Spain, G. (2009). Evaluation of the Picarro G1301 and deployment at three Irish sites. Conference Name: 15th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases, and Related Tracer Measurement Techniques.

  • Whalen, M. (1993). The global methane cycle. Annual Review of Earth and Planetary Science, 21, 407–426.

    Article  Google Scholar 

  • WMO. (2011). Greenhouse Gas Bulletin. Geneva: World Meteorological Organization. November, 7.

    Google Scholar 

  • Worthy, D. E. J., Levin, I., Trivett, N. B. A., Kuhlmann, A. J., Hopper, J. F., & Ernst, M. K. (1998). Seven years of continuous methane observations at a remote boreal site in Ontario, Canada. Journal of Geophysical Research, 103, 15995–16007.

    Article  CAS  Google Scholar 

  • Wuebbles, D. J., & Hayhoe, K. (2000). Atmospheric Methane: Trends and Impacts, in: van Ham, J. et al. (Eds), Non-CO2 Greenhouse Gases: Scientific Understanding Control and Implementation, Kluwer Academic Publishers, the Netherlands: pp. 425–432.

  • Wuebbles, D. J., & Hayhoe, K. (2002). Atmospheric methane and global change. Earth-Science Reviews, 57, 77–210.

    Article  Google Scholar 

  • Zhou, L., Tang, J., Wen, Y., Li, J., Yan, P., & Zhang, X. (2003). The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China. Tellus, 55B, 145–158.

    Article  CAS  Google Scholar 

  • Zhou, L. X., Worthy, D. E. J., Lang, P. M., Ernst, M. K., Zhang, X. C., Wen, Y. P., et al. (2004). Ten years of atmospheric methane observations at a high elevation site in Western China. Atmospheric Environment, 38, 7041–7054.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper has been supported by the Ministry of Economy and Competitiveness and ERDF funds under Projects CGL 2010-09632-E and CGL-2009-11979, to whom the authors express their gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luisa Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, M.L., García, M.Á., Pérez, I.A. et al. CH4 continuous measurements in the upper Spanish plateau. Environ Monit Assess 186, 2823–2834 (2014). https://doi.org/10.1007/s10661-013-3583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3583-7

Keywords

Navigation