Environmental Monitoring and Assessment

, Volume 186, Issue 4, pp 2619–2628 | Cite as

Accuracy assessment of land surface temperature retrievals from Landsat 7 ETM + in the Dry Valleys of Antarctica using iButton temperature loggers and weather station data

  • Lars Brabyn
  • Peyman Zawar-Reza
  • Glen Stichbury
  • Craig Cary
  • Bryan Storey
  • Daniel C. Laughlin
  • Marwan Katurji


The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1 % of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research.


Landsat Land surface temperature Dry Valleys Antarctica 



This research was supported by special International Polar Year funding from the Foundation for Research Science and Technology, New Zealand. Antarctic New Zealand provided logistical support for fieldwork in the study area. Many field assistants helped place and recover iButtons in the field, in particular Charles Lee and Jonathan Banks.


  1. Bromwich, D. H., Box, J. E., Fogt, R. L., & Monaghan, A. J. (2007). Contributors to the Antarctic section of 'State of the Climate in 2006'. Bull. Amer. Meteorol. Soc., 88, 72–74.Google Scholar
  2. Callaghan, T. V., Sonesson, M., & Somme, L. (1992). Response of terrestrial plants and invertebrates to environmental change at high latitudes. Philosophical Transactions of the Royal Society of London, 338, 279–288.CrossRefGoogle Scholar
  3. Coll, C., Caselles, V., & Galve, J. M. (2005). Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sensing of Environment, 97, 288–300.CrossRefGoogle Scholar
  4. Doran, P. T., McKay, C. P., Clow, G. D., Dana, G. L., Fountain, A. G., Nylen, T., & Lyons, W. B. (2002). Climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research—Atmospheres, 107, 1–12.Google Scholar
  5. Fitzsimons, S., Campbell, I., Balks, M., Green, T. G. A., & Hawes, I. (2001). The state of the Ross Sea Region terrestrial environment. In E. J. Waterhouse (Ed.), Ross Sea region 2001: a state of the environment report for the Ross Sea region of Antarctica. Christchurch: New Zealand Antarctic Institute.Google Scholar
  6. Fountain, A. G., Lyons, W. B., Burkins, M. B., Dana, G. L., Doran, P. T., Lewis, K. J., McKnight, D. M., Moorhead, D. L., Parsons, A. N., Priscu, J. C., Wall, D. H., Wharton, R. A., Jr., & Virginia, R. A. (1999). Physical controls on the Taylor Valley ecosystem, Antarctica. BioScience, 49, 961–971.CrossRefGoogle Scholar
  7. Friedmann, E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science, New Series, 215, 1045–1053.Google Scholar
  8. Gooseff, M. N., Barrett, J. E., Doran, P. T., Fountain, A. G., Lyons, W. B., & Parsons, A. N. (2003). Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arctic, Antarctic, and Alpine Research, 35, 91–99.CrossRefGoogle Scholar
  9. Hale, R. C., Gallo, K. P., Tarpley, D., & Yu, Y. (2011). Characterization of variability at in situ locations for calibration/validation of satellite-derived land surface temperature data. Remote Sensing Letters, 2, 41–50.CrossRefGoogle Scholar
  10. Hemmings, A. (2001). Ross Sea Region Overview. In E. J. In Waterhouse (Ed.), Ross Sea region (2001). A state of the environment report for the Ross Sea region of Antarctica. Christchurch: New Zealand Antarctic Institute.Google Scholar
  11. Hopkins, D. W., Sparrow, A. D., Novis, P. M., Gregorich, E. G., Elberling, B., & Greenfield, L. G. (2006). Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proceedings of the Royal Society B, 273, 2687–2695.CrossRefGoogle Scholar
  12. Horowitz, N. H., Cameron, R. E., & Hubbard, J. S. (1972). Microbiology of the Dry Valleys of Antarctica. Science, New Series, 176, 242–245.Google Scholar
  13. Kennedy, A. D. (1995). Antarctic terrestrial ecosystem response to global environmental change. Annual Review of Ecology and Systematics, 26, 683–704.CrossRefGoogle Scholar
  14. Lathrop, R. G., Jr., & Lillesand, T. M. (1987). Calibration of thematic mapper thermal data for water surface temperature mapping: case study on the Great Lakes. Remote Sensing of Environment, 22, 297–307.CrossRefGoogle Scholar
  15. Lundquist, J. D., & Lott, F. (2008). Using inexpensive temperature sensors to monitor the duration and heterogeneity of snow-covered areas in complex terrain. Water Resources Research, 44, W00D16, doi: 10.1029/2008WR007035.
  16. Peck, L. S., Convey, P., & Barnes, D. K. A. (2006). Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews, 81, 75–109.Google Scholar
  17. Schneider, D. P., Steig, E. J., & Comiso, J. C. (2004). Recent climate variability in Antarctica from satellite-derived temperature data. Journal of Climate, 17, 1569–1583.CrossRefGoogle Scholar
  18. Shuman, C., & Comiso, J. (2002). In situ and satellite surface temperature records in Antarctica. Annals of Glaciology, 34, 113–120.CrossRefGoogle Scholar
  19. Schott, J., Hook, S., Barsic, J., Markhamd, B., Millere, J., Padulaf, F., & Raquenoa, N. (2012). Thermal infrared radiometric calibration of the entire Landsat 4, 5, and7 archive (1982–2010). Remote Sensing of Environment, 122, 41–49.CrossRefGoogle Scholar
  20. Suga, Y., Ogawa, H., Ohno, K., & Yamada, K. (2003). Detection of surface temperature from Landsat-7/Etm+. Advances in Space Research, 32(11), 2235–2240.CrossRefGoogle Scholar
  21. Turner, J., Colwell, S., Marshall, G., Lachlan-Cope, T., Carleton, A., Jones, P., Lagun, V., Reid, P., & Iagovkina, S. (2005). Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279–294.CrossRefGoogle Scholar
  22. Turner, J., Bindschadler, R., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D., Mayewski, P., & Summerhayes, C. (2009). Antarctic climate change and the environment. Scientific Committee on Antarctica Report. Cambridge: Victoire Press.Google Scholar
  23. Van den Broeke, M. R. (2004). On the role of Antarctica as heat sink for the global atmosphere. Journal de Physique IV France, 121, 115–124.CrossRefGoogle Scholar
  24. Vincent, W. F. (1997). Polar desert ecosystems in a changing climate: a north–south perspective. In W. B. Lyons, C. Howard-Williams, & I. Hawes (Eds.), Ecosystem processes in Antarctic ice-free landscapes (pp. 3–14). Rotterdam: Balkema.Google Scholar
  25. Walker, B. H. (1997). Preface: global change and terrestrial ecosystems: the GCTE research programme for the Arctic. In B. Sveinbjornsson, (Eds). Global change and arctic terrestrial ecosystems (pp.v–xii). New York: Springer.Google Scholar
  26. Wan, Z., Zhang, Y., Zhang, Q., & Li, Z. L. (2002). Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment, 83, 163–180.CrossRefGoogle Scholar
  27. Wan, Z., Zhang, Y., Zhang, Q., & Li, Z. L. (2004). Quality assessment and validation of the MODIS land surface temperature. International Journal of Remote Sensing, 25, 261–274.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lars Brabyn
    • 1
  • Peyman Zawar-Reza
    • 2
  • Glen Stichbury
    • 1
  • Craig Cary
    • 3
  • Bryan Storey
    • 4
  • Daniel C. Laughlin
    • 3
  • Marwan Katurji
    • 5
  1. 1.Geography, Tourism and Environmental PlanningUniversity of WaikatoHamiltonNew Zealand
  2. 2.Centre for Atmospheric ResearchUniversity of CanterburyChristchurchNew Zealand
  3. 3.Department of Biological SciencesUniversity of WaikatoHamiltonNew Zealand
  4. 4.Gateway AntarcticaUniversity of CanterburyChristchurchNew Zealand
  5. 5.Atmospheric Modelling and DynamicsMichigan State UniversityEast LansingUSA

Personalised recommendations