Skip to main content

Advertisement

Log in

Biosorption kinetics of heavy metals by leaf biomass of Jatropha curcas in single and multi-metal system

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biosorption of Cu2+, Zn2+, and Cr6+ from aqueous solutions by leaf biomass of Jatropha curcas was investigated as a function of biomass concentration, initial metal ion concentration, contact time, and pH of the solution systematically. The aim of this study was to optimize biosorption process and find out a suitable kinetic model for the metal removal in single and multi-metal system. The experimental data were analyzed using two sorption kinetic models, viz., pseudo-first- and pseudo-second-order equations, to determine the best fit equation for the biosorption of metal ions Cu2+, Zn2+, and Cr6+ onto the leaf biomass of J. curcas in different metal systems. The experimental data fitted well the pseudo-second-order equation and provided the best correlation for the biosorption process. The findings of the present investigation revealed that J. curcas leaf biomass was an eco-friendly and cost-effective biosorbent for the removal of heavy metal ions from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aci, F., Nebioglu, M., Arslan, M., Imamoglu, M., Zengin, M., & Kucukislamoglu, M. (2008). Preparation of activated carbon from sugar beet molasses and adsorption of methylene blue. Fresenius Environmental Bulletin, 17(8A), 997–1001.

    CAS  Google Scholar 

  • Al-Masri, M. S., Amin, Y., Al-Akel, B., & Al-Naama, T. (2009). Biosorption of cadmium, lead, and uranium by powder of poplar leaves and branches. Applied Biochemistry and Biotechnology, 160, 976–987.

    Article  Google Scholar 

  • Arshad, M., Zafar, M. N., Younis, S., & Nadeema, R. (2008). The use of neem biomass for the biosorption of zinc from aqueous solutions. Journal of Hazardous Materials, 157, 534–540.

    Article  CAS  Google Scholar 

  • Bayramoglu, G., & Arıca, M. Y. (2009). Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresource Technology, 100, 186–193.

    Article  CAS  Google Scholar 

  • Bayramoglu, G., Gursel, I., Yagmur Tunali, Y., & Arica, Y. (2009). Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets. Bioresource Technology, 100, 2685–2691.

    Article  CAS  Google Scholar 

  • Bayramoglu, G., Arica, M. Y., & Adiguzel, N. (2012). Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil. Chemosphere, 89, 302–309.

    Article  CAS  Google Scholar 

  • Benguella, B., & Benasissa, H. (2002). Cadmium removal from aqueous solutions by chitin: kinetics and equilibrium studies. Water Research, 36, 2463.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., & Minocha, A. K. (2010). Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids and Surfaces B: Biointerfaces, 76, 544–548.

    Article  CAS  Google Scholar 

  • Chong, K. H., & Volesky, B. (1996). Metal biosorption equilibria in a ternary system. Biotechnology and Bioengineering, 49, 629–638.

    Article  CAS  Google Scholar 

  • Chubar, N., Carvalha, J. R., & Correia, N. J. M. (2004). Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230, 57–65.

    Article  Google Scholar 

  • Cordero, B., Lodeiro, P., Herrero, R., & Sastre de Vicente, M. E. (2004). Biosorption of cadmium by Fucus spiralis. Environmental Chemistry, 1, 180.

    Article  CAS  Google Scholar 

  • Dave, P. N., Pandey, N., & Thomas, H. (2012). Adsorption of Cr(VI) from aqueous solutions on tea waste and coconut husk. Indian Journal of Chemical Technology, 19, 111–117.

    CAS  Google Scholar 

  • Elouear, Z., Bouzid, J., & Boujelben, N. (2009). Removal of nickel and cadmium from aqueous solutions by sewage sludge ash: study in single and binary systems. Environmental Technology, 30, 561–570.

    Article  CAS  Google Scholar 

  • Figueira, M. M., Volesky, B., & Ciminelli, V. S. T. (1997). Assessment of interference in biosorption of a heavy metal. Biotechnology and Bioengineering, 54, 344–350.

    Article  CAS  Google Scholar 

  • Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J., & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Separation and Purification Technology, 50, 132–140.

    Article  CAS  Google Scholar 

  • Fourest, E., & Roux, J. C. (1992). Heavy metal biosorption by fungal mycelia by-product mechanisms and influence of pH. Applied Microbiology and Biotechnology, 37, 399–403.

    Article  CAS  Google Scholar 

  • Gaballah, I., Goy, D., Allain, E., Kilbertus, G., & Thauront, J. (1997). Recovery of copper through decontamination of synthetic solutions using modified barks. Metallurgical and Materials Transactions B, 28, 13–23.

    Article  Google Scholar 

  • Gardea-Torresdey, J. L., Gonzalez, J. H., Tiemann, K. J., Rodrignuez, O., & Gamez, G. (1998). Phytofiltration of hazardous cadmium, chromium, lead and zinc ions by biomass of Medicago sativa (alfalfa). Journal of Hazardous Materials, 57, 29–39.

    Article  CAS  Google Scholar 

  • Hammaini, A., Ballester, A., Blazquez, M. L., Gonzalez, F., & Munoz, J. (2002). Effect of the presence of lead on the biosorption of copper, cadmium and zinc by activated sludge. Hydrometallurgy, 67, 109–116.

    Article  CAS  Google Scholar 

  • Hawari, A. H., & Mulligan, C. N. (2006). Biosorption of lead(II), cadmium(II), copper(II) and nickel (Ni) by anaerobic granular biomass. Bioresource Technology, 97, 692–700.

    Article  CAS  Google Scholar 

  • Hussein, H., Ibrahim, S. F., Kandeel, K., & Moawad, H. (2004). Biosorption of heavy metals from wastewater using Pseudomonas sp. Electronic Journal of Biotechnology, 7, 195–201.

    Article  Google Scholar 

  • Javaid, A., Bajwa, R., & Javaid, A. (2010). Biosorption of heavy metals using a dead macro fungus Schizophyllum commune fries: evaluation of equilibrium and kinetic models. Pakistan Journal of Botany, 42, 2105–2118.

    CAS  Google Scholar 

  • Li, Q., Wu, S., Liu, G., Liao, X., Deng, X., Sun, D., et al. (2004). Simultaneous biosorption of cadmium(II) and lead(II) ions by pretreated biomass of Phanerochaete chrysosporium. Separation and Purification Technology, 34, 135–142.

    Article  Google Scholar 

  • Nagpal, U. M. K., Bankar, A. V., Pawar, N. J., Kapadnis, B. P., & Zinjarde, S. S. (2011). Equilibrium and kinetic studies on biosorption of heavy metals by leaf powder of paper mulberry (Broussonetia papyrifera). Water, Air, and Soil Pollution, 215, 177–188.

    Article  CAS  Google Scholar 

  • Naja, G., & Voelesky, B. (2006). Multi-metal biosorption in a fixed bed flow through column. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 194–201.

    Article  CAS  Google Scholar 

  • Nasir, M. H., Nadeem, R., Akhtar, K., Hanif, M. A., & Khaild, A. M. (2007). Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for lead(II) and Zn(II) removal from aqueous solutions. Journal of Hazardous Materials, 147, 1006–1014.

    Article  CAS  Google Scholar 

  • Piccin, J. S., Dotto, G. L., & Pinto, L. A. A. (2010). Adsorption isotherms and thermochemical data of FD&C RED N° 40 binding by chitosan. Brazilian Journal of Chemical Engineering, 28, 295–304.

    Google Scholar 

  • Popuri, S. R., Kalyani, S., Kachireddy, S. R., & Krishnnaiah, A. (2007). Biosorption of hexavalent chromium from aqueous solution by prawn pond algae (Sphaeroplea). Indian Journal of Chemistry, 46, 284–289.

    Google Scholar 

  • Qaiser, S., Saleemi, A. R., & Umar, M. (2009). Biosorption of lead from aqueous solution by Ficus religiosa leaves: batch and column study. Journal of Hazardous Materials, 166, 998–1005.

    Article  CAS  Google Scholar 

  • Rawat, A. P., Rawat, M., & Rai, J. P. N. (2012). Toxic metals biosorption by Jatropha curcas deoiled cake: equilibrium and kinetic studies. Water Environment Research, 85, 733–742. doi:10.2175/WER-D-12-00187.1.

    Article  Google Scholar 

  • Sekhar, K. C., Kamala, C. T., Chary, N. S., & Anjaneyulu, Y. (2003). Removal of heavy metals using a plant biomass with reference to environmental control. International Journal of Mineral Processing, 68, 37–45.

    Article  Google Scholar 

  • Serencam, H., Ozdes, D., Duran, C., & Tufekci, M. (2013). Biosorption properties of Morus alba L. for Cd(II) ions removal from aqueous solutions. Environmental Monitoring and Assessment, 185, 6003–6011.

    Article  CAS  Google Scholar 

  • Singh, R. S., Singh, V. K., Mishra, A. K., Tiwari, P. N., Singh, U. N., & Sharma, Y. C. (2008). Parthenium hysterophorus: a novel adsorbent to remove Cr(VI) removal from metal containing wastewater. Journal of Applied Sciences in Environmental Sanitation, 3, 177–189.

    Google Scholar 

  • Utigikar, V., Chen, B. Y., Tabak, H. H., Bishop, D. F., & Govind, R. (2000). Treatment of acid mine drainage. I. Equilibrium biosorption of zinc and copper on non-viable activated sludge. International Biodeterioration and Biodegradation, 46, 19–28.

    Article  Google Scholar 

  • Veglio', F., & Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44, 301–316.

    Article  Google Scholar 

  • Villaescusa, I., Fiol, N., Martinez, M., Miralles, N., Poch, J., & Serarols, J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalk wastes. Water Research, 38, 992–1002.

    Article  CAS  Google Scholar 

  • Volesky, B. (1999). Biosorption for the next century. In R. Amils & A. Ballester (Eds.), Biohydrometallurgy and environment toward the mining of the 21st century, part B (pp. 161–170). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Yang, J., He, M., & Wang, G. (2009). Removal of toxic chromate using free and immobilized Cr(VI) reducing bacterial cells of Intrasporangium sp. Q5-1. World Journal of Microbiology and Biotechnology, 25, 1579–1587.

    Article  CAS  Google Scholar 

  • Yuan, Y., Hall, K., & Oldham, C. (2001). A preliminary model for predicting heavy metal contaminants loading from an urban catchment. Science of the Total Environment, 206, 299–307.

    Article  Google Scholar 

Download references

Acknowledgments

The laboratory facilities provided by G.B. Pant University of Agriculture and Technology, Pantnagar are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. N. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawat, A.P., Giri, K. & Rai, J.P.N. Biosorption kinetics of heavy metals by leaf biomass of Jatropha curcas in single and multi-metal system. Environ Monit Assess 186, 1679–1687 (2014). https://doi.org/10.1007/s10661-013-3485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3485-8

Keywords