Skip to main content

Trends in nutrient and sediment retention in Great Plains reservoirs (USA)

Abstract

Reservoirs are artificial ecosystems with physical, chemical, and biological transitional characteristics between rivers and lakes. Greater water retention time in reservoirs provides conditions for cycling materials inputs from upstream waters through sedimentation, biological assimilation and other biogeochemical processes. We investigated the effects of reservoirs on the water quantity and quality in the Great Plains (Kansas, USA), an area where little is known about these dominant hydrologic features. We analyzed a 30-year time-series of discharge, total phosphorus (TP), nitrate (NO3 −), and total suspended solids (TSS) from six reservoirs and estimated overall removal efficiencies from upstream to downstream, testing correlations among retention, discharge, and time. In general, mean removal of TP (42–74 %), TSS (0–93 %), and NO3 − (11–56 %) from upstream to downstream did not change over 30 years. TP retention was associated with TSS removal, suggesting that nutrient substantial portion of P was adsorbed to solids. Our results indicated that reservoirs had the effect of lowering variance in the water quality parameters and that these reservoirs are not getting more or less nutrient-rich over time. We found no evidence of temporal changes in the yearly mean upstream and downstream discharges. The ratio upstream/downstream discharge was analyzed because it allowed us to assess how much contribution of additional unsampled tributaries may have biased our ability to calculate retention. Nutrient and sediment removal was less affected by hydraulic residence time than expected. Our study demonstrates that reservoirs can play a role in the removal and processing of nutrient and sediments, which has repercussions when valuing their ecological services and designing watershed management plans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Banner, E., Stahl, A., & Dodds, W. (2009). Stream discharge and Riparian land use influence in-stream concentrations and loads of phosphorus from Central Plains Watersheds. Environmental Management, 44(3), 552–565.

    Article  Google Scholar 

  • Bhuyan, S. J., Koelliker, J. K., Marzen, L. J., & Harrington, J. A., Jr. (2003). An integrated approach for water quality assessment of a Kansas watershed. Environmental Modelling & Software, 18(5), 473–484.

    Article  Google Scholar 

  • Billota, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861.

    Article  Google Scholar 

  • Bolin, S. B., Ward, T., & Cole, R. A. (1987). Phosphorus models applied to New Mexico reservoirs. Journal of Water Resources Planning and Management, 113(3), 323–335.

    Article  Google Scholar 

  • Brikowski, T. H. (2008). Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the great plains lead to unsustainable surface water storage. Journal of Hydrology, 354(1–4), 90–101.

    Article  Google Scholar 

  • Bukaveckas, P. A., Guelda, D. L., Jack, J., Koch, R., Sellers, T., & Shostell, J. (2005). Effects of point source loadings, sub-basin inputs and longitudinal variation in material retention on C, N and P delivery from the Ohio River Basin. Ecosystems, 8, 825–840.

    Article  CAS  Google Scholar 

  • Cánovas, C. R., Olias, M., Vazquez-Suñé, E., Ayora, C., & Miguel Nieto, J. (2012). Influence of releases from a fresh water reservoir on the hydrochemistry of the Tinto River (SW Spain). Science of the Total Environment, 416(1), 418–428.

    Article  Google Scholar 

  • Caraco, N. F., & Cole, J. J. (1999). Human impact on nitrate export: an analysis using major world rivers. Ambio, 28(2), 167–170.

    Google Scholar 

  • Carney, E. (2009). Relative influence of lake age and watershed land use on trophic state and water quality of artificial lakes in Kansas. Lake and Reservoir Management, 25(2), 199–207.

    Article  Google Scholar 

  • Chung, S. W., Ko, I. H., & Kim, Y. K. (2008). Effect of reservoir flushing on downstream river water quality. Journal of Environmental Management, 86(1), 139–147.

    Article  CAS  Google Scholar 

  • Cooper, C. M., & Knight, S. S. (1990). Nutrient trapping efficiency of a small sediment detention reservoir. Agricultural Water Management, 18, 149–158.

    Article  Google Scholar 

  • Cope, V., Mercante, C. T. J., Carmo, C. F., Sendacz, S., & Monteiro Júnior, A. J. (2011). Mass balance of nutrients during the filling phase of two reservoirs of Sistema Produto Alto Tietê (SPAT). Acta Scientiarum Biological Sciences, 33(1), 49–57.

    Article  Google Scholar 

  • Costigan, K. H., & Daniels, M. D. (2012). Damming the prairie: human alteration of great plains river regimes. Journal of Hydrology, 444–445, 90–99.

    Article  Google Scholar 

  • Dang, T. H., Coynel, A., Orange, D., Blanc, G., Etcheber, H., & Le, L. A. (2010). Long-term monitoring (1960–2008) of the river-sediment transport in the Red River Watershed (Vietnam): temporal variability and dam-reservoir impact. Science of The Total Environment, 408(20), 4654–4664.

    Article  CAS  Google Scholar 

  • David, M. B., Wall, L. G., Royer, T. V., & Tank, J. L. (2006). Denitrification and the nitrogen budget of a reservoir in an agricultural watershed. Ecological Applications, 16(6), 2177–2190.

    Article  Google Scholar 

  • Diogo, P. A., Fonseca, M., Coelho, P. S., Mateus, N. S., Almeida, M. C., & Rodrigues, A. C. (2008). Reservoir phosphorous sources evaluation and water quality modeling in a transboundary watershed. Desalination, 226(1–3), 200–214.

    Article  CAS  Google Scholar 

  • Dodds, W. K., & Oakes, R. M. (2008). Headwater influences on downstream water quality. Environmental Management, 41(3), 367–377.

    Article  Google Scholar 

  • Dodds, W. K., Carney, E., & Angelo, R. T. (2006). Determining ecoregional reference conditions for nutrients, secchi depth and chlorophyll a in Kansas Lakes and reservoirs. Lake and Reservoir Management, 22(2), 151–159.

    Article  CAS  Google Scholar 

  • Drummond, M. A., Auch, R. F., Karstensen, K. A., Sayler, K. L., Taylor, J. L., & Loveland, T. R. (2012). Land change variability and human–environment dynamics in the United States Great Plains. Land Use Policy, 29, 710–723.

    Article  Google Scholar 

  • Dzialowski, A. R., Wang, S. H., Lim, N. C., Spotts, W. W., & Huggins, D. G. (2005). Nutrient limitation of phytoplankton growth in central plains reservoirs, USA. Journal of Plankton Research, 27(6), 587–595.

    Article  CAS  Google Scholar 

  • Friedl, G., & Wüest, A. (2002). Disrupting biogeochemical cycles—consequences of damming. Aquatic Sciences, 64, 55–65.

    Article  CAS  Google Scholar 

  • Gelbrecht, J., Lengsfeld, H., Pöthig, R., & Opitz, D. (2005). Temporal and spatial variation of phosphorus input, retention and loss in a small catchment of NE Germany. Journal of Hydrology, 304, 151–165.

    Article  CAS  Google Scholar 

  • Harrison, J. A., Maranger, R. J., Alexander, R. B., Giblin, A. E., Jacinthe, P. A., Mayorga, E., et al. (2009). The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry, 93, 143–157.

    Article  CAS  Google Scholar 

  • Hejzlar, J., Sámalová, K., Boers, P., & Kronvang, B. (2006). Modelling phosphorus retention in lakes and reservoirs. Water, Soil and Air Pollution: Focus, 6(2), 123–130.

    Google Scholar 

  • Houser, J. N., Bierman, D. W., Burdis, R. M., & Soeken-Gittinger, L. A. (2010). Longitudinal trends and discontinuities in nutrients, chlorophyll, and suspended solids in the Upper Mississippi River: implications for transport, processing, and export by large rivers. Hydrobiologia, 651, 127–144.

    Article  CAS  Google Scholar 

  • James, W. F., & Barko, J. W. (2004). Diffusive fluxes and equilibrium processes in relation to phosphorus dynamics in the Upper Mississippi River. River Research and Applications, 20, 473–484.

    Article  Google Scholar 

  • Jones, J. R., & Knowlton, M. F. (2005). Suspended solids in Missouri reservoirs in relation to catchment features and internal processes. Water Research, 39(15), 3629–3635.

    Article  CAS  Google Scholar 

  • Jossette, G., Leporcq, B., Sanchez, N., & Philippon. (1999). Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine basin (France). Biogeochemistry, 47(2), 119–146.

    Article  CAS  Google Scholar 

  • Kann, J and E. Asarian. 2007. Nutrient budgets and Phytoplankton trends in Iron Gate and Copco Reservoirs, California, May 2005 - May 2006. Final Technical Report to the State Water Resources Control Board, Sacramento, California. 81pp + appendices.

  • KDHE (1972–2010). Stream chemistry monitoring program quality assurance management plan. Division of Environment, Kansas Department of Health and Environment, Topeka, KS.

  • Klaver, G., van Os, B., Negrel, P., & Petelet-Giraud, E. (2007). Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube. Environmental Pollution, 148(3), 718–728.

    Article  CAS  Google Scholar 

  • Kõiv, T., Nõges, T., & Laas, A. (2011). Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia, 660(1), 105–115.

    Article  Google Scholar 

  • Kummu, M., & Varis, O. (2007). Sediment-related impacts due to upstream reservoir trapping, the lower Mekong River. Geomorphology, 85(3–4), 275–293.

    Article  Google Scholar 

  • Liu, S. M., Li, L. W., Zhang, G. L., Liu, Z., Yu, Z., & Ren, J. L. (2012). Impacts of human activities on nutrient transports in the Huanghe (Yellow River) estuary. Journal of Hydrology, 430–431(2), 103–110.

    Article  Google Scholar 

  • López-Tarazón, J. A., Batalla, R. J., Vericat, D., & Francke, T. (2009). Suspended sediment transport in a highly erodible catchment: the River Isábena (Southern Pyrenees). Geomorphology, 109(3–4), 210–221.

    Article  Google Scholar 

  • Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F., et al. (2010). Global nutrient export from water sheds 2 (NEWS 2): Model development and implementation. Environmental Modelling & Software, 25(7), 837–853.

    Article  Google Scholar 

  • Neal, C., Hilton, J., Wade, A. J., Neal, M., & Wickham, H. (2006). Chlorophyll-a in the rivers of eastern England. Science of the Total Environment, 365, 84–104.

    Article  CAS  Google Scholar 

  • Okereke, V. I., Bauman, E. R., Austin, T. A., & Schulze Lutz, D. (1988). Midwest (USA) reservoir water quality modification. III. Soluble nutrients. Water, Air, & Soil Pollution, 37(3–4), 343–354.

    Article  CAS  Google Scholar 

  • Popovicova, J. (2009). Water quality assessment and ecoregional comparison of a reservoir in east-central Indiana. Lake and Reservoir Management, 25(2), 155–166.

    Article  Google Scholar 

  • Qu, H. J., & Kroeze, C. (2010). Past and future trends in nutrients export by rivers to the coastal waters of China. Science of the Total Environment, 408(9), 2075–2086.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. (1997). Vegetation processes in the pelagic. ECI, Oldendorf: A model for Ecosystem Theory.

    Google Scholar 

  • Rueda, F., Moreno-Ostos, E., & Armengol, J. (2006). The residence time of river water in reservoirs. Ecological Modelling, 191(2), 260–274.

    Article  CAS  Google Scholar 

  • Schoch, A. L., Schilling, K. E., & Chan, K. S. (2009). Time-series modeling of reservoir effects on river nitrate concentrations. Advances in Water Resources, 32(8), 1197–1205.

    Article  CAS  Google Scholar 

  • Seitzinger, S. P., Styles, R. V., Boyer, E. W., Alexander, R. B., Billen, G., Howarth, R. W., et al. (2002). Nitrogen retention in rivers: model development and application to watershed in the northeastern USA. Biogeochemistry, 57–58(1), 199–237.

    Article  Google Scholar 

  • Shantz, M., Dowsett, E., Canham, E., Tavernier, G., Stone, M., & Price, J. (2004). The effect of drawdown on suspended solids and phosphorus export from Columbia Lake, Waterloo, Canada. Hydrological Processses, 18(5), 865–878.

    Article  Google Scholar 

  • Teodoru, C., & Wehrli, B. (2005). Retention of sediments and nutrients in the Iron Gate I reservoir on the Danube River. Biogeochemistry, 76(3), 539–565.

    Article  CAS  Google Scholar 

  • Tomaszek, J. A., & Koszelnik, P. (2003). A simple model of nitrogen retention in reservoirs. Hydrobiologia, 504(1–3), 51–58.

    Article  CAS  Google Scholar 

  • Traykov, I.T., Boyanovsky, B.B. (2008). Assessment of the nutrient load in the Upper Arda River catchment - Prediction of the trophic state of the Madan Reservoir. Acta Zoologica Bulgarica, 225–232.

  • USEPA. (1983). Methods for chemical analysis of water and waste (EPA 600/4-79-020). Cincinnati: U.S. Environmental Protection Agency.

    Google Scholar 

  • Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P., & Syvitski, J. P. (2003). Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, 39(1–2), 169–190.

    Article  Google Scholar 

  • Wang, S. H., Huggins, D. G., Frees, L., Volkman, C. G., Lim, N. C., Baker, D. S., et al. (2005). An integrated modeling approach to total watershed management: water quality and watershed assessment of Cheney reservoir, Kansas, USA. Water, Air, & Soil Pollution, 164(1–4), 1–19.

    Article  CAS  Google Scholar 

  • Whiles, M. R., & Dodds, W. K. (2002). Relationships between stream size, suspended particles, and filter-feeding macroinvertebrates in a Great Plains drainage network. Journal of Environmental Quality, 31(5), 1589–1600.

    Article  CAS  Google Scholar 

  • Whitehead, P. G., & Toms, I. P. (1993). Dynamic modelling of nitrate in reservoirs and lakes. Water Research, 27(8), 1377–1384.

    Article  CAS  Google Scholar 

  • Zahar, Y., Ghorbel, A., & Albergel, J. (2008). Impacts of large dams on downstream flow conditions of rivers: aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia). Journal of Hydrology, 351(3–4), 318–330.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the doctoral scholarship to the first author (Process 2009/50842-2) and the financial support to the second author (Process 2008/55636-9). Joanna B. Whittier has kindly provided a map of the studied reservoirs in Kansas State (USA). This is publication # 14-081-J from the Kansas Agricultural Experiment station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davi Gasparini Fernandes Cunha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cunha, D.G.F., do Carmo Calijuri, M. & Dodds, W.K. Trends in nutrient and sediment retention in Great Plains reservoirs (USA). Environ Monit Assess 186, 1143–1155 (2014). https://doi.org/10.1007/s10661-013-3445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3445-3

Keywords