Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 2, pp 919–934 | Cite as

Evaluation of wireless sensor networks (WSNs) for remote wetland monitoring: design and initial results

  • Carl J. Watras
  • Michael Morrow
  • Ken Morrison
  • Sean Scannell
  • Steve Yaziciaglu
  • Jordan S. Read
  • Yu-Hen Hu
  • Paul C. Hanson
  • Tim Kratz
Article

Abstract

Here, we describe and evaluate two low-power wireless sensor networks (WSNs) designed to remotely monitor wetland hydrochemical dynamics over time scales ranging from minutes to decades. Each WSN (one student-built and one commercial) has multiple nodes to monitor water level, precipitation, evapotranspiration, temperature, and major solutes at user-defined time intervals. Both WSNs can be configured to report data in near real time via the internet. Based on deployments in two isolated wetlands, we report highly resolved water budgets, transient reversals of flow path, rates of transpiration from peatlands and the dynamics of chromophoric-dissolved organic matter and bulk ionic solutes (specific conductivity)—all on daily or subdaily time scales. Initial results indicate that direct precipitation and evapotranspiration dominate the hydrologic budget of both study wetlands, despite their relatively flat geomorphology and proximity to elevated uplands. Rates of transpiration from peatland sites were typically greater than evaporation from open waters but were more challenging to integrate spatially. Due to the high specific yield of peat, the hydrologic gradient between peatland and open water varied with precipitation events and intervening periods of dry out. The resultant flow path reversals implied that the flux of solutes across the riparian boundary varied over daily time scales. We conclude that WSNs can be deployed in remote wetland-dominated ecosystems at relatively low cost to assess the hydrochemical impacts of weather, climate, and other perturbations.

Keywords

Wireless sensor networks Ecosystem observatories Wetlands Dissolved organic carbon Climate change 

Notes

Acknowledgments

Funding was provided by the Wisconsin Focus on Energy-EERD Program (www.focusonenergy.com/Enviro-Econ-Research/) and the Wisconsin Department of Natural Resources. Logistical support was provided by the Global Lake Ecological Observatory Network (www.gleon.org) and by the North Temperate Lakes Long Term Ecological Research Project (www.lter.limnology.wisc.edu/). We thank JR Rubsam for technical assistance in the field and laboratory, and we thank Harry Hemond for helpful discussions of wetland processes. The prototype nodes in Crystal Bog were built by Sean Scannell and Steve Yazicioglu, undergraduates in Electrical and Computer Engineering at UW-Madison, under the direct supervision of ECE instructor Mike Morrow. This is a contribution from the Trout Lake Research Station, University of Wisconsin-Madison.

References

  1. Barnhart, K., Urteaga, I., Han, Q., Jayasumana, A., & Illangasekare, T. (2010). On integrating groundwater transport models with wireless sensor networks. Ground Water, 48(5), 771–780. doi: 10.1111/j.1745-6584.2010.00684.x.CrossRefGoogle Scholar
  2. Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: a survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30(7), 1655–1695. doi: 10.1016/j.comcom.2006.12.020.CrossRefGoogle Scholar
  3. Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26(4), 889–916.CrossRefGoogle Scholar
  4. Buffam, I., Carpenter, S. R., Yeck, W., Hanson, P. C., & Turner, M. G. (2010). Filling holes in regional carbon budgets: predicting peat depth in a north temperate lake district. Journal of Geophysical Research. doi: 10.1029/2009JG001034.Google Scholar
  5. Buffam, I., Turner, M. G., Desai, A. R., Hanson, P. C., Rusak, J. A., Lottig, N. R., et al. (2011). Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Global Change Biology, 17, 193–1211.CrossRefGoogle Scholar
  6. Chong, C.-Y., & Kumar, S. P. (2003). Sensor network: evolution, opportunities and challenges. Proceedings of the IEEE, 91(8), 1247–1256. doi: 10.1109/JPROC.2003.814918.CrossRefGoogle Scholar
  7. Drexler, J. Z., & Ewel, K. C. (2001). Effect of the 1997–1998 ENSO-related drought on hydrology and salinity in a Micronesian wetland complex. Estuaries, 24(3), 347–356.CrossRefGoogle Scholar
  8. Gerla, P. J. (1992). The relationship of water table changes to the capillary fringe, evapotranspiration, and precipitation in intermittent wetlands. Wetlands, 12, 91–98.CrossRefGoogle Scholar
  9. Heinemeyer, A., Croft, S., Garnett, M. H., Gloor, E., Holden, J., Lomas, M. R., et al. (2010). The MILLENNIA peat cohort model: predicting past, present and future soil carbon budgets and fluxes under changing climates in peatlands. Climate Research, 45, 207–226. doi: 10.3354/cr00928.CrossRefGoogle Scholar
  10. Hemond, H. F. (1980). Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecological Monographs, 50(4), 507–526.CrossRefGoogle Scholar
  11. Holden, J., & Burt, T. P. (2003). Hydrological studies on Blanket Peat: the significance of the Acrotelm–Catotelm model. Journal of Ecology, 91(1), 86–102.CrossRefGoogle Scholar
  12. Ingram, H. A. P. (1982). Size and shape in raised mire ecosystems: a geophysical model. Nature, 297, 300–303.CrossRefGoogle Scholar
  13. Johnson, W. C., Millett, B. V., Gilmanov, T., Voldseth, R. A., Guntenspergen, G. R., & Naugle, D. E. (2005). Vulnerability of northern prairie wetlands to climate change. Bioscience, 55(10), 863–872.CrossRefGoogle Scholar
  14. Kido, M. H., Mundt, C. W., Montgomery, K. N., Asquith, A., Goodale, D. W., & Kaneshiro, K. Y. (2008). Integration of wireless sensor networks into cyberinfrastructure for monitoring Hawaiian “Mountain-to-Sea” environments. Environmental Management, 42(4), 658–666. doi: 10.1007/s00267-008-9164-9.CrossRefGoogle Scholar
  15. Kratz, T. K., Webster, K. E., Riera, J. L., Lewis, D. B., & Pollard, A. I. (2006). Making sense of the landscape: geomorphic legacies and the landscape position of lakes. In J. J. Magnuson, T. K. Kratz, & B. J. Benson (Eds.), Long-term dynamics of lakes in the landscape (pp. 49–66). New York: Oxford.Google Scholar
  16. Lenters, J. D., Kratz, T. K., & Bowser, C. J. (2005). Effects of climate variability on lake evaporation: results from a long-term energy budget of Sparkling Lake, northern Wisconsin (USA). Journal of Hydrology, 308, 168–195.CrossRefGoogle Scholar
  17. Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., et al. (2008). Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences, 5, 1475–1491.CrossRefGoogle Scholar
  18. Loheide, S. P., II. (2008). A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations. Ecohydrology, 1, 59–66.CrossRefGoogle Scholar
  19. Mackay, D. S., Ewers, B. E., Cook, B. D., & Davis, K. J. (2007). Environmental drivers of evapotranspiration in a shrub wetland and an upland forest in northern Wisconsin. Water Resources Research. doi: 10.1029/2006WR005149.Google Scholar
  20. Magnuson, J. J., Kratz, T. K., & Benson, B. J. (Eds.). (2006). Long-term dynamics of lakes in the landscape (Long-term Ecological Research Network Series). Oxford: Oxford University Press.Google Scholar
  21. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., & Anderson, J. (2002). Wireless sensor networks for habitat monitoring. In: Proceedings of the1st ACM International Workshop on Wireless Sensor Networks and Applications (Atlanta, Sept.). New York: ACM Press. pp. 88–97.Google Scholar
  22. Marin, L. E., Kratz, T. K., & Bowser, C. J. (1990). Spatial and temporal patterns in the hydrogeochemistry of a poor fen in northern Wisconsin. Biogeochemistry, 11, 63–76.CrossRefGoogle Scholar
  23. Mitra, S., Wassmann, R., & Vlek, P. l. G. (2005). An appraisal of global wetland area and its organic carbon stack. Current Science, 88(1), 25–35.Google Scholar
  24. Porter, J. H., Nagy, E., Kratz, T. K., Hanson, P., Collins, S. L., & Arzberger, P. (2009). New eyes on the world: advanced sensors for ecology. BioScience, 59(5), 385–397. doi: 10.1525/bio.2009.59.5.6.CrossRefGoogle Scholar
  25. Ritsema, C. J., Kuipers, H., Kleiboer, L., van den Elsen, E., Oostindie, K., Wesseling, J. G., et al. (2009). A new wireless underground network system for continuous monitoring of soil water contents. Water Resources Research. doi: 10.1029/2008wr007071.Google Scholar
  26. Rosenberry, D. O., & Winter, T. C. (1997). Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota. Journal of Hydrology, 191, 266–289.CrossRefGoogle Scholar
  27. Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., & Estrin, D. (2004). Habitat monitoring with sensor networks. Communications of the ACM, 47(6), 34–40.CrossRefGoogle Scholar
  28. Watras, C. J., Hanson, P. C., Stacy, T. L., Morrison, K. M., Mather, J., Hu, Y.-H., et al. (2011). A temperature compensation method for CDOM fluorescence sensors in freshwater. Limnology and Oceanography: Methods, 9, 296–301.Google Scholar
  29. Webster, K. E., Bowser, C. J., Anderson, M. P., & Lenters, J. D. (2006). Understanding the lake-groundwater system: just follow the water. In J. J. Magnuson, T. K. Kratz, & B. J. Benson (Eds.), Long-term dynamics of lakes in the landscape (Long-Term Ecological Research Network Series) (pp. 19–48). Oxford: Oxford University Press.Google Scholar
  30. White, W. N. (1932). A method of estimating ground-water supplies based on the discharge by plants and evaporation from soils: results of investigations in Escalante Valley, Utah. U.S. Geol. Surv. Water Supply Paper.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Carl J. Watras
    • 1
    • 2
  • Michael Morrow
    • 3
  • Ken Morrison
    • 1
    • 2
  • Sean Scannell
    • 3
  • Steve Yaziciaglu
    • 3
  • Jordan S. Read
    • 4
    • 5
  • Yu-Hen Hu
    • 3
  • Paul C. Hanson
    • 2
  • Tim Kratz
    • 2
  1. 1.Wisconsin Department of Natural ResourcesUW-Trout Lake Research StationBoulder JunctionUSA
  2. 2.Center for LimnologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Department of Civil and Environmental EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.Center for Integrated Data AnalyticsU.S. Geological SurveyMiddletonUSA

Personalised recommendations