Skip to main content
Log in

CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 13 February 2014

Abstract

Chromophoric dissolved organic matter (CDOM) fluorescence or absorption is often proposed as a rapid alternative to chemical methods for the estimation of bulk dissolved organic carbon (DOC) concentration in natural waters. However, the robustness of this method across a wide range of systems remains to be shown. We measured CDOM fluorescence and DOC concentration in four tropical freshwater and coastal environments (estuary and coastal, tropical shallow lakes, water from the freshwater lens of two small islands, and soil leachates). We found that although this method can provide an estimation of DOC concentration in sites with low variability in DOC and CDOM sources in systems where the variability of DOC and CDOM sources are high, this method should not be used as it will lead to errors in the estimation of the bulk DOC concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blough, N. V., & Del Vecchio, R. (2002). Chromophoric dissolved organic matter in the coastal environment. In D. Hansell & C. Carlson (Eds.), Biogeochemistry of marine dissolved organic matter (pp. 509–546). New York: Academic.

    Chapter  Google Scholar 

  • Comte, J. C., Banton, O., Join, J.-L., & Cabioch, G. (2010). Evaluation of effective groundwater recharge of freshwater lens in small islands by the combined modeling of geoelectrical data and water heads. Water Resources Research, 46, W06601. doi:10.1029/2009wr008058.

    Article  Google Scholar 

  • Del Giorgio, P. A., Cole, J. J., & Cimbleris, A. (1997). Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 385(6612), 148–151.

    Article  Google Scholar 

  • Del Giorgio, P. A., & Davis, J. (2003). Patterns in dissolved organic matter lability and consumption across aquatic ecosystems. In S. Findlay & R. L. Sinsabaugh (Eds.), Aquatic ecosystems: interactivity of dissolved organic matter (pp. 399–424). Amsterdam: Academic.

    Chapter  Google Scholar 

  • Del Giorgio, P. A., & Duarte, C. M. (2002). Respiration in the open ocean. Nature, 420(6914), 379–384.

    Article  Google Scholar 

  • Downing, B. D., Bergamaschi, B. A., Evans, D. G., & Boss, E. (2008). Assessing contribution of DOC from sediments to a drinking-water reservoir using optical profiling. Lake and Reservoir Management, 24(4), 381–391. doi:10.1080/07438140809354848.

    Article  Google Scholar 

  • Downing, B. D., Boss, E., Bergamaschi, B. A., Fleck, J. A., Lionberger, N., Ganju, N., et al. (2009). Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements. Limnology and Oceanography: Methods, 7, 119–131. doi:10.4319/lom.2009.7.119.

    Article  CAS  Google Scholar 

  • Green, S. A., & Blough, N. V. (1994). Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography, 39(8), 1903–1916.

    Article  CAS  Google Scholar 

  • Hedges, J. I. (1992). Global biogeochemical cycles : progress and problems. Marine Chemistry, 39, 67–93.

    Article  CAS  Google Scholar 

  • Hoge, F. E., Vodacek, A., & Blough, N. V. (1993). Inherent optical properties of the ocean—retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements. Limnology and Oceanography, 38(7), 1394–1402.

    Article  CAS  Google Scholar 

  • Ishii, S. K. L., & Boyer, T. H. (2012). Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. Environmental Science & Technology, 46(4), 2006–2017. doi:10.1021/es2043504.

    Article  CAS  Google Scholar 

  • Karlsson, J., Bystrom, P., Ask, J., Ask, P., Persson, L., & Jansson, M. (2009). Light limitation of nutrient-poor lake ecosystems. Nature, 460(7254), 506–509.

    Article  CAS  Google Scholar 

  • Kowalczuk, P., Zablocka, M., Sagan, S., & Kulinski, K. (2010). Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea. Oceanologia, 52(3), 431–471.

    Article  Google Scholar 

  • Malcolm, R. L. (1990). The uniqueness of humic substances in each of soil, stream and marine environments. Analytica Chimica Acta, 232(1), 19–30.

    Article  CAS  Google Scholar 

  • Nelson, N. B., Siegel, D. A., & Michaels, A. F. (1998). Seasonal dynamics of colored dissolved material in the Sargasso Sea. Deep-Sea Research Part I-Oceanographic Research Papers, 45(6), 931–957.

    Article  CAS  Google Scholar 

  • Rochelle-Newall, E. J., Chu, V. T., Pringault, O., Amouroux, D., Arfi, R., Bettarel, Y., et al. (2011). Phytoplankton diversity and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam). Marine Pollution Bulletin, 62, 2317–2329.

    Article  CAS  Google Scholar 

  • Rochelle-Newall, E. J., Delille, B., Frankignoulle, M., Gattuso, J.-P., Jacquet, S., Riebesell, U., et al. (2004). Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels. Marine Ecology-Progress Series, 272, 25–31.

    Article  Google Scholar 

  • Rochelle-Newall, E. J., & Fisher, T. R. (2002a). Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Marine Chemistry, 77, 23–41.

    Article  CAS  Google Scholar 

  • Rochelle-Newall, E. J., & Fisher, T. R. (2002b). Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Marine Chemistry, 77(1), 7–21.

    Article  CAS  Google Scholar 

  • Rochelle-Newall, E. J., Winter, C., Barron, C., Borges, A. V., Duarte, C. M., Elliott, M., et al. (2007). Artificial neural network analysis of factors controling ecosystem metabolism in coastal systems. Ecological Applications, 17(5), S185–S196.

    Article  Google Scholar 

  • Saraceno, J. F., Pellerin, B. A., Downing, B. D., Boss, E., Bachand, P. A. M., & Bergamaschi, B. A. (2009). High-frequency in situ optical measurements during a storm event: Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes. Journal of Geophysical Research: Biogeosciences, 114(G4), n/a-n/a, doi:10.1029/2009jg000989.

  • Sinsabaugh, R. L., & Findlay, S. E. G. (2003). Dissolved organic matter: out of the black box and into the mainstream. In S. E. G. Findlay & R. L. Sinsabaugh (Eds.), Aquatic ecosystems : interactivity of dissolved organic matter (pp. 479–498). Boston: Academic.

    Chapter  Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3–4), 239–254.

    Article  CAS  Google Scholar 

  • Steinberg, D. K., Nelson, N. B., Carlson, C. A., & Prusak, A. C. (2004). Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp. Marine Ecology-Progress Series, 267, 45–56.

    Article  CAS  Google Scholar 

  • Suksomjit, M., Nagao, S., Ichimi, K., Yamada, T., & Tada, K. (2009). Variation of dissolved organic matter and fluorescence characteristics before, during and after phytoplankton bloom. Journal of Oceanography, 65(6), 835–846. doi:10.1007/s10872-009-0069-x.

    Article  CAS  Google Scholar 

  • Williams, P. J. L. B. (1998). The balance of plankton respiration and photosynthesis in the open oceans. Nature, 394, 55–57.

    Article  CAS  Google Scholar 

  • Williamson, C. E., Morris, D. P., Pace, M. L., & Olson, A. G. (1999). Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography, 44(3), 795–803.

    Article  CAS  Google Scholar 

  • Yamashita, Y., Kloeppel, B. D., Knoepp, J., Zausen, G. L., & Jaffe, R. (2011). Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems, 14(7), 1110–1122. doi:10.1007/s10021-011-9469-z.

    Article  CAS  Google Scholar 

  • Yamashita, Y., & Tanoue, E. (2004). In situ production of chromophoric dissolved organic matter in coastal environments. Geophysical Research Letters, 31(14), L14302. doi:10.1029/2004GL019734.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the French IRD, the UMR Bioemco, the French programs EC2CO–Haiphong, EC2CO-Compaqua and CNES/TOSCA-VITEL, the ANR Vulnerabilité-INTERFACE, and the ANR Biodiversité–BIOFUN. JP Torréton and X. Mari are thanked for the access to their fluorometer as are the PIs of the above programs and the researchers and technicians who participated in the sample collection. The MSc. research of AM formed part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rochelle-Newall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochelle-Newall, E., Hulot, F.D., Janeau, J.L. et al. CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems. Environ Monit Assess 186, 589–596 (2014). https://doi.org/10.1007/s10661-013-3401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3401-2

Keywords

Navigation