Skip to main content
Log in

Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Antibiotics consumption has increased worldwide, and their residues are frequently reported in aquatic environments. It is believed that antibiotics reach aquatic water bodies through sewage. Medicine consumed for healthcare practices are often released into sewage, and after sewage treatment plant, it reaches the receiving water bodies of lakes or rivers. In the present study, we determined the fate of some commonly used antibiotics in a sewage treatment plant (STP) located in Delhi and the environmental concentration of these antibiotics in the Yamuna River, which receives the sewage and industrial effluent of Delhi. There are many reports on antibiotics occurrences in STP and river water worldwide, but monitoring data from the Indian subcontinent is sparse. Samples were taken from a STP and from six sampling sites on the Yamuna River. Several antibiotics were tested for using offline solid-phase extraction followed by high-performance liquid chromatography equipped with photodiode array analysis. Recoveries varied from 25.5–108.8 %. Ampicillin had the maximum concentration in wastewater influents (104.2 ± 98.11 μg l−1) and effluents (12.68 ± 8.38 μg l−1). The fluoroquinolones and cephalosporins had the lower concentrations. Treatment efficiencies varied between 55 and 99 %. Significant amounts of antibiotics were discharged in effluents and were detected in the receiving water body. The concentration of antibiotics in the Yamuna River varied from not detected to 13.75 μg l−1 (ampicillin) for the compounds investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alighardashi, A., Pandolfi, D., Potier, O., & Pons, M. N. (2009). Acute sensitivity of activated sludge bacteria to erythromycin. Journal of Hazardous Materials, 172, 685–692.

    Article  CAS  Google Scholar 

  • APHA, AWWA. (2000). Standard methods for examination of water and wastewater investigations. Washington: APHA, AWWA.

    Google Scholar 

  • Backhaus, T., Scholze, M., & Grimme, L. H. (2000). The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fisheri. Aquatic Toxicology, 49, 49–61.

    Article  CAS  Google Scholar 

  • Batt, A. L., Bruce, I. B., & Aga, D. S. (2006). Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environmental Pollution, 142, 295–302.

    Article  CAS  Google Scholar 

  • Bendz, D., Paxeus, N. A., Ginn, T. R., & Loge, F. J. (2005). Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden. Journal of Hazardous Materials, 122, 195–204.

    Article  CAS  Google Scholar 

  • Berset, J. D., Kupper, T., Etter, R., & Tarradellas, J. (2004). Consideration about the enantioselectivity transformation of polycyclic musks in wastewater, treated wastewater, and sewage sludge and analysis of their fate in a sequencing batch reactor plant. Chemosphere, 57, 987–996.

    Article  CAS  Google Scholar 

  • Berto, J., Rochenbach, G. C., Barreiros, M. A. B., Correa, A. X. R., Peluso-Silva, S., & Radetski, C. M. (2009). Physicochemical, microbiological, and ecotoxicological evaluation of a septic tank/Fenton reaction combination for the treatment of hospital wastewaters. Ecotoxicology and Environmental Safety, 72, 1076–1081.

    Article  CAS  Google Scholar 

  • Boxall, A. B. A. (2002). The environmental side effects of medication: how are human and veterinary medicines in soils and water bodies affecting human and environmental health? EMBO Reports, 5, 1110–1116.

    Article  Google Scholar 

  • Brain, R. A., Johnson, D. J., & Richards, M. (2004). Effects of 25 pharmaceutical compounds on Lemna gibba using a 7-day static renewal test. Environmental Toxicology and Chemistry, 23, 371–382.

    Article  CAS  Google Scholar 

  • Brain, R. A., Hanson, M. L., Solomon, K. R., & Brooks, B. W. (2008). Aquatic plants exposed to pharmaceuticals: effects and risks. Reviews of Environmental Contamination and Toxicology, 192, 67–115.

    CAS  Google Scholar 

  • Brambilla, G., Civitarcale, C., & Migliore, L. (1994). Experimental toxicity and analysis of bacitracin, flumequine, and sulfadimethoxine in terrestrial and aquatic organisms as a predictive model for ecosystem damage. Science of the Total Environment, 13, 114–118.

    Google Scholar 

  • Calamari, D., Zuccato, E., Castiglioni, S., Bagnati, R., & Fanelli, R. (2003). A strategic survey of therapeutic drugs in the rivers Po and Lambro in northen Italy. Environmental Science and Technology, 37, 1241–1248.

    Article  CAS  Google Scholar 

  • Carlsson, C., Johansson, A. K., Alvan, G., Bergman, G., & Kuhler, T. (2006). Are pharmaceuticals potent environmental pollutants? Part I: environmental risk assessments of selected active pharmaceutical ingredients. Science of Total Environment, 364, 67–87.

    Article  CAS  Google Scholar 

  • Castiglioni, S., Fanelli, R., Calamari, D., Bagnati, R., & Zuccato, E. (2004). Methodological approaches for studying pharmaceuticals in the environment by comparing predicted and measured concentrations in River Po, Italy. Regulatory Toxicology and Pharmacology, 39, 25–32.

    Article  CAS  Google Scholar 

  • Castiglioni, S., Bagnati, R., Fanelli, R., Pomati, F., Calamari, D., & Zuccato, E. (2006). Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science and Technology, 40, 357–363.

    Article  CAS  Google Scholar 

  • Census (2011). http://censusindia.gov.in. Accessed 24 Sep 2012.

  • CPCB Report (2006). Water quality status of River Yamuna (1999–2005). ADSORBS/41/2006-07 Central Pollution Control Board, Govt. of India. Available via http://www.cpcb.nic.in/newitems/11.pdf. Accessed 24 Sep 2012.

  • DeLorenzo, M. E., & Fleming, J. (2008). Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Archives of Environmental Contamination and Toxicology, 54, 203–210.

    Article  CAS  Google Scholar 

  • Diwan, V., Tamhankar, A. J., Khandal, R. K., Sen, S., Aggarwal, M., Marothi, Y., et al. (2010). Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health, 10, 414–422.

    Article  Google Scholar 

  • Duong, H. A., Pham, N. H., Nguyen, H. T., Hoang, T. T., Pham, H. V., Pham, V. C., et al. (2008). Occurrence, fate, and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi Vietnam. Chemosphere, 72, 968–973.

    Article  CAS  Google Scholar 

  • Feitosa-Felizzola, J., & Chiron, S. (2009). Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France). Journal of Hydrology, 364, 50–57.

    Google Scholar 

  • Ferrari, B., Paxeus, N., Giudice, R. L., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 5, 359–370.

    Article  Google Scholar 

  • Fick, J., Soderstrom, H., Linderberg, R. H., Phan, C., Tysklind, M., & Larsson, D. G. J. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, 28, 2522–2527.

    Article  CAS  Google Scholar 

  • Golet, E. M., Xifra, I., Siegrist, H., Alder, A. C., & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science and Technology, 37, 3243–3249.

    Article  CAS  Google Scholar 

  • Greenhalgh, T. (1987). Drug prescription and self-medication in India: an exploratory survey. Social Science and Medicine, 25, 307–318.

    Article  CAS  Google Scholar 

  • Grujic, S., Vasiljevic, T., & Lausevic, M. (2009). Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography–ion trap–tandem mass spectrometry. Journal of Chromatography A, 1216, 4989–5000.

    Article  CAS  Google Scholar 

  • Halling-Sorensen, B., Lutzhoft, H. H. C., Andersen, H. R., & Ingerslev, F. (2000). Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim, and ciprofloxacin. Journal of Antimicrobial Chemotherapy, 46, 53–58.

    Article  CAS  Google Scholar 

  • Harrass, M. C., Kindig, A. C., & Taub, F. B. (1985). Responses of blue-green and green algae to streptomycin in unialgal and paired culture. Aquatic Toxicology, 6, 1–12.

    Article  CAS  Google Scholar 

  • Hartmann, A., Alder, A. C., Koller, T., & Widmer, R. M. (1988). Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environmental Toxicology and Chemistry, 17, 377–382.

    Google Scholar 

  • Heidler, J., & Halden, R. (2008). Meta-analysis of mass balances examining chemical fate during wastewater treatment. Environmental Science and Technology, 42, 6324–6332.

    Article  CAS  Google Scholar 

  • Hernando, M. D., Mezcua, M., Fernandez-Alba, A. R., & Barcelo, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters, and sediments. Talanta, 69, 334–342.

    Article  CAS  Google Scholar 

  • Hirsch, R., Ternes, T. A., Haberer, K., Mehlich, A., Ballwanz, F., & Kratz, K. L. (1998). Determination of antibiotics in different water compartments via liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography, A815, 213–223.

    Article  Google Scholar 

  • Hirsch, R., Ternes, T. A., Haberer, K., & Kratz, K. L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225, 109–118.

    Article  CAS  Google Scholar 

  • India’s quality affordable generics: for global healthcare 47th Annual Publication IDMA 2009.

  • Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L., & Parrella, A. (2005). Toxic and genotoxic evaluation of six antibiotics on nontarget organisms. Science of the Total Environment, 345, 87–98.

    Google Scholar 

  • Jamwal, P., & Mittal, A. K. (2010). Reuse of treated sewage in Delhi city: microbial evaluation of STPs and reuse option. Resource Conservation and Recycling, 54, 211–221.

    Article  Google Scholar 

  • Jones-Lepp, T. (2006). Chemical markers of human waste contamination: analysis of urobilin and pharmaceuticals in source waters. Journal of Environmental Monitoring, 8, 472–478.

    Article  CAS  Google Scholar 

  • Kerry, J., Coyne, R., Gilroy, D., Hiney, M., & Smith, P. (1996). Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistance in sediments beneath a marine salmon farm following oxytetracycline therapy. Aquaculture, 145, 31–39.

    Article  CAS  Google Scholar 

  • Kim, S. C., & Carlson, K. (2006). Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed. Water Research, 40, 2549–2560.

    Article  CAS  Google Scholar 

  • Kim, Y., Jung, J., Oh, S. R., & Choi, K. (2008). Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes. Journal of Environmental Science and Health. Part. B, 43, 56–64.

    Article  CAS  Google Scholar 

  • Kinney, C. A., Furlong, E. T., Zaugg, S. D., Burkhardt, M. D., Werner, S. L., Cahill, J. D., et al. (2006a). Survey of organic wastewater contaminants in biosolids destined for land application. Environmental Science and Technology, 40, 7207–7215.

    Article  CAS  Google Scholar 

  • Kinney, C. A., Furlong, E. T., Werner, S. L., & Cahill, J. D. (2006b). Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environmental Toxicology and Chemistry, 25, 317–326.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environmental Science and Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Skopec, M., Meyer, M. T., Furlong, E. T., & Zaugg, S. D. (2004). Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Science of the Total Environment, 328, 119–130.

    Article  CAS  Google Scholar 

  • Kummerer, K. (2001). Drugs in the environment: emission of drugs, diagnostic aids, and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere, 45, 957–969.

    Article  CAS  Google Scholar 

  • Kummerer, K. (2004). Resistance in the environment. Journal of Antimicrobial Chemotherapy, 54, 311–320.

    Article  CAS  Google Scholar 

  • Kurunthachalam, S. K. (2012). Pharmaceutical substances in India are a point of great concern ? Hydrology Current Research, 3, 3–5.

    Google Scholar 

  • Larsson, D. J. G., de-Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148, 751–755.

    Article  CAS  Google Scholar 

  • Laville, N., Ait-Aissa, S., & Gomez, E. (2004). Effects of human pharmaceuticals on cytotoxicity, EROD activity, and ROS production in fish hepatocytes. Toxicology, 196, 41–55.

    Article  CAS  Google Scholar 

  • Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., & Jin, F. (2008). Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Research, 42, 307–317.

    Article  CAS  Google Scholar 

  • Li, B., Zhang, T., Xu, Z., & Fang, H. P. P. (2009). Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra-performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 645, 64–72.

    Article  CAS  Google Scholar 

  • Lin, A. Y. C., & Tsai, Y.-T. (2009). Occurrence of pharmaceuticals in Taiwan’s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. The Science of the Total Environment, 407, 3793–3802.

    Google Scholar 

  • Lin, A. Y. C., Yu, T. H., & Lateef, S. K. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 167, 1163–1169.

    Article  CAS  Google Scholar 

  • Lindberg, R., Jarnheimer, P. A., Olsen, B., Johansson, M., & Tysklind, M. (2004). Determination of antibiotic substances in hospital sewage water using solid-phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere, 57, 1479–1488.

    Article  CAS  Google Scholar 

  • Lindsey, M. E., Meyer, T. M., & Thurman, E. M. (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 73, 640–4646.

    Article  Google Scholar 

  • Logananthan, B., Phillips, M., Mowery, H., & Jones-Lepp, T. (2009). Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant. Chemosphere, 75, 70–77.

    Article  Google Scholar 

  • Lutzhoft, H. H. C., Halling-Sorensen, B., & Jorgensen, S. E. (1999). Algae toxicity of antibacterial agents applied in Danish fish farming. Archives of Environmental Contamination and Toxicology, 36, 1–6.

    Article  CAS  Google Scholar 

  • McArdell, C., Molnar, E., Suter, M. J. F., & Giger, W. (2003). Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed Switzerland. Environmental Science and Technology, 37, 5479–5486.

    Article  CAS  Google Scholar 

  • Middleton, J.H., & Salierno, J.D. (2012). Antibiotic resistance in triclosan tolerant fecal coliforms isolated from surface waters near wastewater treatment plant outflows (Morris County, NJ, USA). Ecotoxicology and Environmental Safety, 1–10.

  • Migliore, L., Brambilla, G., Grassitellis, A., & Delupis, G. D. (1993). Toxicity and bioaccumulation of Sulfadimethoxine in Artemia (Crustacea, Anostraca). International Journal of Salt Lake Research, 2, 141–152.

    Article  Google Scholar 

  • Minh, T. B., Leung, H. W., Loi, I. H., Chan, W. H., So, M. K., Mao, J. Q., et al. (2009). Antibiotics in the Hong Kong metropolitan area: ubiquitous distribution and fate in Victoria Harbour. Marine Pollution Bulletin, 58, 1052–1062.

    Article  CAS  Google Scholar 

  • Muñoz, I., Gómez-Ramos, M. J., Agüera, A., Fernández-Alba, A. R., García-Reyes, J. F., & Molina-Díaz, A. (2009). Chemical evaluation of contaminants in wastewater effluents and the environmental risk of reusing effluents in agriculture. TrAC Trends in Analytical Chemistry, 28, 676–694.

    Google Scholar 

  • Mutiyar, P.K., & Mittal, A.K. (2013). Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: a case study of emerging pollutant. Desalination and Water Treatment, doi:10.1080/19443994.2013.770199, (in press).

  • Nakata, H., Kannan, K., Jones, P. D., & Giesy, J. P. (2005). Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography–mass spectrometry and fluorescence detection. Chemosphere, 58, 759–766.

    Article  CAS  Google Scholar 

  • Nunes, B., Carvalho, F., & Guilhermino, L. (2005). Acute toxicity of widely used pharmaceuticals in aquatic species, Gambusia holbrooki, Artemia parthenogenetica and Tetraselmis chuii. Ecotoxicology and Environmental Safety, 61, 413–419.

    Article  CAS  Google Scholar 

  • Oetken, M., Bachmann, J., Schulte-Oehlmann, U., & Oehlmann, J. (2004). Evidence for endocrine disruption in invertebrates. International Review of Cytology, 236, 1–44.

    CAS  Google Scholar 

  • Ohlsen, K., Ternes, T., Werner, G., Wallner, U., Loffler, D., Ziebuhr, W., et al. (2003). Impact of antibiotics on conjugational resistance gene transfer in Staphylococcus aureus in sewage. Environmental Microbiology, 5, 711–716.

    Article  CAS  Google Scholar 

  • Park, S., & Choi, K. (2008). Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology, 17, 526–538.

    Article  CAS  Google Scholar 

  • Pomati, F., Netting, A. G., Calamari, D., & Neilan, B. A. (2004). Effects of erythromycin, tetracycline, and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquatic Toxicology, 67, 387–396.

    Article  CAS  Google Scholar 

  • Ramaswamy, B. R., Shanmugam, G., Velu, G., Rengarajan, B., & Larsson, D. G. J. (2011). GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. Journal of Hazardous Materials, 186, 1586–1593.

    Google Scholar 

  • Rao, R. N., Venkateswarlu, N., & Narsimha, R. (2008). Determination of antibiotics in aquatic environment by solid-phase extraction followed by liquid chromatography–electrospray ionization mass spectrometry. Journal of Chromatography A, 1187, 151–164.

    Article  Google Scholar 

  • Renew, J. E., & Huang, C. H. (2004). Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid-phase extraction and liquid chromatography–electrospray mass spectrometry. Journal of Chromatography A, 1042, 13–121.

    Article  Google Scholar 

  • Robinson, A. A., Belden, J. B., & Lydy, M. J. (2005). Toxicity of fluoroquinolones antibiotics to aquatic organisms. Environmental Toxicology and Chemistry, 24, 423–430.

    Article  CAS  Google Scholar 

  • Rosal, R., Rodrıguez, A., Perdigon, J. A. M., Mezcua, M., Hernando, M. D., Leton, P., et al. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 44, 578–588.

    Article  CAS  Google Scholar 

  • Sengelov, G., Agerso, Y., Halling-Sorensen, B., Baloda, S. B., Andersen, J. S., & Jensen, L. B. (2003). Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environmental International, 28, 587–595.

    Article  CAS  Google Scholar 

  • Shah, S. Q. A., Colquhoun, D. J., Nikuli, H. L., & Sørum, H. (2012). Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. Environmental Science and Technology, 46, 8672–8679.

    Article  CAS  Google Scholar 

  • Ternes, T. A., & Hirsch, R. (2000). Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment. Environmental Science and Technology, 34, 2741–2748.

    Article  CAS  Google Scholar 

  • Ternes, T. A., Stuuber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., et al. (2003). Ozonation: a tool for removal of pharmaceuticals, contrast media, and musk fragrances from wastewater? Water Research, 37, 1976–1982.

    Article  CAS  Google Scholar 

  • Vasconcelos, T. G., Kummerer, K., Henriques, D. M., & Martins, A. F. (2009). Ciprofloxacin in hospital effluent: degradation by ozone and photo processes. Journal of Hazardous Materials, 169, 1154–1158.

    Article  CAS  Google Scholar 

  • Watkinson, A. J., Murby, E. J., & Costanzo, S. D. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Research, 41, 4164–4176.

    Article  CAS  Google Scholar 

  • Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Science of the Total Environment, 407, 2711–2723.

    Article  CAS  Google Scholar 

  • Watts, C. D., Craythorne, B., Fielding, M., & Killops, S. D. (1982). Nonvolatile organic compounds in treated waters. Environmental Health Perspectives, 46, 87–89.

    Article  CAS  Google Scholar 

  • Westergaard, K., Muller, A. K., Christensen, S., Bloem, J., & Sorenson, S. J. (2001). Effect of tylosin as a disturbance on the soil microbial community. Soil Biology and Biochemistry, 33, 2061–2071.

    Article  CAS  Google Scholar 

  • Wollenberger, L., Halling-Sørensen, B., & Kusk, K. O. (2000). Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere, 40, 723–730.

    Article  CAS  Google Scholar 

  • Xu, W., Zhang, G., Li, X., Zou, S., Li, P., Hu, Z., et al. (2007). Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD) South China. Water Research, 41, 4526–4534.

    Article  CAS  Google Scholar 

  • Yang, S., Cha, J., & Carlson, K. (2005). Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1097, 40–53.

    Article  CAS  Google Scholar 

  • Zhang, R., Zhang, G., Zheng, Q., Tang, J., Chen, Y., Xu, W., et al. (2012). Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Ecotoxicology and Environmental Safety, 80, 208–215.

    Article  CAS  Google Scholar 

  • Zuccato, E., Calamari, D., Natangelo, M., & Fanelli, R. (2000). Presence of therapeutic drugs in the environment. The Lancet, 355, 1789–1790.

    Article  CAS  Google Scholar 

  • Zuccato, E., Castiglioni, S., & Fanelli, R. (2005). Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. Journal of Hazardous Materials, 122, 205–209.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, PKM, is thankful to University Grant Commission (UGC), Delhi for awarding Junior Research Fellowship (JRF) for Doctoral Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin K. Mutiyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutiyar, P.K., Mittal, A.K. Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India). Environ Monit Assess 186, 541–557 (2014). https://doi.org/10.1007/s10661-013-3398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3398-6

Keywords

Navigation