Skip to main content

Advertisement

Log in

Trophic dynamics of U, Ni, Hg and other contaminants of potential concern on the Department of Energy’s Savannah River Site

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Department of Energy’s Savannah River Site is a former nuclear weapon material production and current research facility located in South Carolina, USA. Wastewater discharges from a fuel and nuclear reactor target manufacturing facility released depleted and natural U, as well as other metals into the Tims Branch-Steed Pond water system. We investigated the current dynamics of this system for the purposes of environmental monitoring and assessment by examining metal concentrations, bioavailability, and trophic transfer of contaminants in seven ponds. Biofilm, detritus, and Anuran and Anisopteran larvae were collected and analyzed for stable isotopes (δ 15N, δ 13C) and contaminants of potential concern (COPC) with a focus on Ni, U, and Hg, to examine metal mobility. Highest levels of Ni and U were found in biofilms U (147 and 332 mg kg−1 DW, respectively), while highest Hg levels were found in tadpoles (1.1 mg kg−1 DW). We found intraspecific biomagnification of COPCs as expressed through stable isotope analysis. Biofilms were the best indicators for contamination and Anuran larvae with the digestive tract removed were the best indicators of the specific bioavailability of the focal metals. Monitoring data showed that baseline δ 15N values differed between ponds, but within a pond, values were stable throughout tadpole Gosner stage, strengthening the case to use this species for monitoring purposes. It is likely that there still is risk to ecosystem integrity as COPC metals are being assimilated into lower trophic organisms and even low levels of this mixture has shown to produce deleterious effects to some wildlife species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldenderfer, M. S., & Blashfield, R. K. (1984). Cluster analysis. Beverly Hills: Sage Publications.

    Google Scholar 

  • Altig, R., & Kelly, J. P. (2012). Indices of feeding in Anuran tadpoles as indicated by gut characteristics. Herpetologica, 30(2), 200–203.

    Google Scholar 

  • Altig, R., Whiles, M. R., & Taylor, C. L. (2007). What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshwater Biology, 52(2), 386–395. doi:10.1111/j.1365-2427.2006.01694.x.

    Article  Google Scholar 

  • Arnett, M.W., Spitzer, D. (1994). Savannah River Site Report. Westinghouse Savannah River; Submitted to the Department of Energy.

  • Atkinson, P.W., Baker, A.J., Bennett, K.A., Clark, N.A., Clark, J.A., Cole, K.B., Dey, A., Duiven, A.G., Gillings, S., González, P.M., Harrington, B.A., Kalasz, K., Minton, C.D.T, Newton, J., Niles, L.J., Robinson, R.A., de Lima, Serrano, I., Sitters, H.P. (2006). Using stable isotope ratios to unravel shorebird migration and population mixing: a case study with Red Knot Calidris canutus. In: Boere, G.C., Galbraith, C.A., & Stroud, D.A. (eds) Waterbirds around the world. The Stationery Office, Edinburgh, pp. 535–5340

  • Batson, V. L., Bertsch, P. M., & Herbert, B. E. (1996). Transport of anthropogenic uranium from sediments to surface waters during episodic storm events. Journal of Environmental Quality, 25, 1129–1137.

    Article  CAS  Google Scholar 

  • Berglund, F., Berlin, M., Birke, G., et al. (1971). Methyl mercury in fish. A toxicologic epidemiologic evaluation of risks. Nordisk Hygienisk Tidskrift. Supplementum 4. Stockholm, p. 1–364.

  • Birdsall, C. W., Grue, C. E., & Anderson, A. (1986). Lead concentrations in bullfrog (Rana catesbeiana) and green frog (Rana clamitans) tadpoles inhabiting highway drainages. Environmental Pollution (Series A), 40(3), 233–247. doi:10.1016/0143-1471(86)90098-X.

    Article  CAS  Google Scholar 

  • Blois, C. (1985). The larval diet of three Anisopteran (Odonata) species. Freshwater Biology, 15, 505–514.

    Article  Google Scholar 

  • Brigham, M. E., Wentz, D. A., Aiken, G. R., & Krabbenhoft, D. P. (2009). Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environmental Science and Technology, 43, 2720–2725.

    Article  CAS  Google Scholar 

  • Bryan, A. L., Jr., Hopkins, W. A., Parikh, J. H., Jackson, B. P., & Unrine, J. M. (2011). Coal fly ash basins as an attractive nuisance to birds: parental provisioning exposes nestlings to harmful trace elements. Environmental Pollution, 161(2), 170–177.

    Google Scholar 

  • Buettner, S., Thompson, A., Seaman, J., Singer, J., Brown, S., & Harris J. (2011). Vectors for metal transport in the Tim Branch /Steed Pond watershed on the Savannah River Site. Proceedings of the Georgia Water Resources Conference. pp. 1–4.

  • Burger, J., & Snodgrass, J. (1998). Heavy metals in bullfrog (Rana catesbeiana) tadpoles: effects of depuration before analysis. Environmental Toxicology and Chemistry, 17(11), 2203–2209.

    CAS  Google Scholar 

  • Burger, J., & Snodgrass, J. (2000). Oral deformities in several species of frogs from the Savannah River Site. Environmental Toxicology and Chemistry, 19(10), 2519–2524.

    Article  CAS  Google Scholar 

  • Casey, R. E., Simon, J. A., Atueyi, S., Snodgrass, J. W., Karouna-Renier, N., & Sparling, D. W. (2006). Temporal trends of trace metals in sediment and invertebrates from stormwater management ponds. Water, Air, and Soil Pollution, 178, 69–77. doi:10.1007/s11270-006-9132-z.

    Article  Google Scholar 

  • Charbonneau, S. M., Munro, I. C., Nera, E. A., Armstrong, F. A. J., Willes, R. F., Bryce, F., et al. (1976). Chronic toxicity of methylmercury in the adult cat. Toxicology, 5, 337–349.

    Article  CAS  Google Scholar 

  • Cooke, A. S. (1981). Tadpoles as indicators of harmful levels of pollution in the field. Environmental Pollution, 25(2), 123–133. doi:10.1016/0143-1471(81)90012-X.

    Article  CAS  Google Scholar 

  • Croteau, M., Luoma S. N., & Stewart, R. A. (2005). Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. Limnology and Oceanography, 50(5), 1511–1519.

    Google Scholar 

  • Dornbush, M., Cambardella, C., Ingham, E., & Raich, J. (2008). A comparison of soil food webs beneath C3- and C4-dominated grasslands. Biology and Fertility of Soils, 45(1), 73–81. doi:10.1007/s00374-008-0312-4.

    Article  Google Scholar 

  • Driscoll, C. T., Holsapple, J., Schofield, C. L., & Munson, R. (1998). The chemistry and transport of mercury in a small wetland in the Adirondack region of New York, USA. Biogeochemistry, 40, 137–146.

    Article  CAS  Google Scholar 

  • Evans, A.G., Bauer, L.R., Haselow, J.S., Hayes, D.W., Martin, H.L., Mcdowell, W.L., & Pickett, J.B. (1992). Uranium in the Savannah River Site Environment. Aiken (SC). Westinghouse Savannah River Company. Report No.: WSRC-RP-92-315. Contract No.: DE-AC09-89SR18035. Submitted to the Department of Energy.

  • Farag, A. M., Woodward, D. F., Brumbaugh, W., Goldstein, J. N., MacConnell, E., Hogstrand, C., et al. (1999). Dietary effects of metal-contaminated invertebrates from the Coeur d’Alene River, Idaho on cutthroat trout. Transactions of the American Fisheries Society, 128, 578–592.

    Article  CAS  Google Scholar 

  • FFA. (1993). Federal Facility Agreement for the Savannah River Site. Administrative Document Number 89-05-FF, Effective Date: August 16, 1993, WSRC-OS-94-42.

  • Fisher, W. D. (1958). On grouping for maximum homogeneity. Journal of the American Statistical Association, 53, 789–798.

    Article  Google Scholar 

  • Freda, J. (1991). The Effects of aluminum and other metals on amphibians atmospheric deposition. Environmental Pollution, 71, 305–328.

    Article  CAS  Google Scholar 

  • Gaines, K. F., Romanek, C. S., Boring, C. S., Lord, C. G., & Burger, J. (2002). Using raccoons as an indicator species for metal accumulation across trophic levels: a stable isotope approach. Journal of Wildlife Management, 66(3), 811–821.

    Article  Google Scholar 

  • Gannes, L. Z., Martinez Del Rio, C., & Kock, P. (1998). Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comparative Biochemistry and Physiology - Part A, 119, 725–737.

    Article  CAS  Google Scholar 

  • Gillilland, C. D., Summer, C. L., Gillilland, M. G., Kannan, K., Villeneuve, D. L., Coady, K. K., et al. (2001). Organochlorine insecticides, polychlorinated biphenyls, and metals in water, sediment, and green frogs from southwestern Michigan. Chemosphere, 44(3), 327–339.

    Article  CAS  Google Scholar 

  • Glooschenko, V., Weller, W. F., Smith, P. G. R., Alvo, R., & Archbold, J. H. G. (1992). Amphibian distribution with respect to pond water chemistry near Sudbury, Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 49(Suppl. I), 114–121.

    Google Scholar 

  • Gosner, K. L. (1960). A simplified table for staging Anuran embryos larvae with notes on identification. Herpetologica, 16(3), 183–190.

    Google Scholar 

  • Hecky, A. R. E., Hesslein, R. H., & Hecky, R. E. (2011). Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society, 14(4), 631–653.

    Article  Google Scholar 

  • Hill, W. R., & Larsen, I. L. (2005). Growth dilution of metals in microalgal biofilms. Environmental Science and Technology, 39(6), 1513–1518.

    Article  CAS  Google Scholar 

  • Hill, W. R., Stewart, A. J., & Napolitano, G. E. (1996). Mercury speciation and bioaccumulation in lotic primary producers and primary consumers. Canadian Journal of Fisheries and Aquatic Sciences, 53(4), 812–819. doi:10.1139/cjfas-53-4-812.

    Article  CAS  Google Scholar 

  • Hobson, K. A., & Wassenaar, L. I. (1997). Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia, 109, 142–148.

    Article  Google Scholar 

  • Hunte-Brown M.E. (2006). The effects of extirpation of frogs on the trophic structure in tropical montane streams in Panama [Dissertation]. Drexel University.

  • Jackson, T. A. (1998). The mercury problem in recently formed reservoirs of northern Manitoba (Canada): effects of impoundment and other factors on the production of methyl mercury by microorganisms in sediments. Canadian Journal of Fisheries and Aquatic Sciences, 45, 97–121.

    Article  Google Scholar 

  • Jardine, T. D., Kidd, K. A., & Fisk, T. A. (2006). Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environmental Science and Technology, 40(24), 7501–7511.

    Article  CAS  Google Scholar 

  • Johansson, F. (2010). Intraguild predation and cannibalism in Odonate larvae: effects of foraging behaviour and zooplankton availability. Oikos, 66(1), 80–87.

    Article  Google Scholar 

  • Johnson, D. M., Crowley, P. H., Bohanan, R. E., Watson, C. N., & Martin, H. (2010). Competition among larval dragonflies: a field enclosure experiment. Ecology, 66(1), 119–128.

    Article  Google Scholar 

  • Kelly, J. F. (2000). Stable isotope of carbon and nitrogen in the study of avian mammalian trophic ecology. Canadian Journal of Zoology, 78, 1–27.

    Article  Google Scholar 

  • Krabbenhoft, D.P., Wiener, J.G., Brumbaugh, W.G.,. Olson, M.L., DeWild, J.F., & Sabin, T.J. (1999). A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients. In: Morganwalp, D.W., & Buxton, H.T., (eds.). US Geological Survey Toxic Substances Hydrology Program Proceedings of the Technical Meeting. 1999 March 8–12; Charleston, South Carolina. Contamination of Hydrologic Systems and Related Ecosystems. US Geological Survey Water-Resources Investigations Report no. 99-4018B

  • Krawczyk-Bärsch, E., Lünsdorf, H., Arnold, T., Brendler, V., Eisbein, E., Jenk, U., et al. (2011). The influence of biofilms on the migration of uranium in acid mine drainage (AMD) waters. The Science of the Total Environment, 409(16), 3059–3065. doi:10.1016/j.scitotenv.2011.04.051.

    Article  Google Scholar 

  • Kröpfl, K., Vladár, P., Szabó, K., Acs, E., Borsodi, A. K., Szikora, S., et al. (2006). Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Environmental Pollution, 144(2), 626–631. doi:10.1016/j.envpol.2006.01.031.

    Article  Google Scholar 

  • Kvartek, E.J., Carlton, W.H., Denham, M., Eldridge, L., & Newman, M.C. (1994). Assessment of mercury in the Savannah River Site environment. Final Report. Westinghouse Savannah River Company. Aiken (SC); Report No.: WSRC 94/0218ET. Contract No.: DE-AC09-893R18035.

  • Lefcort, H., Meguire, R. A., Wilson, L. H., & Ettinger, W. F. (1998). Heavy metals alter the survival, growth, metamorphosis, and antipredatory behavior of Columbia spotted frog (Rana luteiventris) tadpoles. Archives of Environmental Contamination and Toxicology, 456, 447–456.

    Article  Google Scholar 

  • Logan, M. S., Iverson, S. J., Ruzzante, D. E., Walde, S. J., Macchi, P. J., Alonso, M. F., et al. (2000). Long term diet differences between morphs in trophically polymorphic Percichthys trucha (Pisces: Percichthyidae) populations from the southern Andes. Biological Journal of the Linnean Society, 69, 599–616.

    Google Scholar 

  • Looney, B.B., Bryan, A.L., Mathews, T.J., Smith, J.G., Peterson, M.J., Betancourt, A, Jackson, D.G., et al. (2012). Interim results from a study of the impacts of tin ( II ) based mercury treatment in a small stream ecosystem : Tims Branch, Savannah River Site. Interim Report. US Department of Energy Office of Scientific and Technical Information www.osti.gov Aiken (SC); 2012 March. Report No.: SRNL-STI-2012-002002. Contract No.: DE-AC09-08SR22470, DE-FC07SR22506, DE-AC05-00OR2272, DE-EM-0000598. Sponsored by the U.S. Department of Energy Environmental Management Office of Site Restoration – Soil and Groundwater (EM-12).

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., & Neyman, J., (Ed.). Proceedings of the Fifth Berkley Symposium on Mathematical Statistics and Probability 1965 June 21–18; Berkley (CA) University of California Press; pp. 281–297.

  • Marques, S. M., Gonçalves, F., & Pereira, R. (2008). Effects of a uranium mine effluent in the early-life stages of Rana perezi Seoane. The Science of the Total Environment, 402(1), 29–35. doi:10.1016/j.scitotenv.2008.04.005.

    Article  CAS  Google Scholar 

  • Marques, S. M., Antunes, S. C., Pissarra, H., Pereira, M. L., Gonçalves, F., & Pereira, R. (2009). Histopathological changes and erythrocytic nuclear abnormalities in Iberian green frogs (Rana perezi Seoane) from a uranium mine pond. Aquatic Toxicology (Amsterdam, Netherlands), 91(2), 187–195. doi:10.1016/j.aquatox.2008.04.010.

    Article  CAS  Google Scholar 

  • Mason, R. P., Laporte, J., & Andres, S. (2000). Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Archives of Environmental Contamination and Toxicology, 297, 283–297. doi:10.1007/s002449910038.

    Article  Google Scholar 

  • McIntyre, P. B., & Flecker, A. S. (2006). Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia, 148(1), 12–21. doi:10.1007/s00442-005-0354-3.

    Article  Google Scholar 

  • Metts, B. S., Buhlmann, K. A., Scott, D. E., Tuberville, T. D., & Hopkins, W. A. (2012). Interactive effects of maternal and environmental exposure to coal combustion wastes decrease survival of larval southern toads (Bufo terrestris). Environmental Pollution, 164, 211–218.

    Article  CAS  Google Scholar 

  • Miettinen, J. K. (1973). Absorption and elimination of dietary (Hg++) and methylmercury in man. In M. W. Miller & T. W. Clarkson (Eds.), Mercury, mercurial, and mercaptans. Springfield: C.C. Thomas.

    Google Scholar 

  • Murray, S. M., Gaines, K. F., Novak, J. M., Gochfeld, M., & Burger, J. (2010). DNA double-strand breakage as an endpoint to examine metal and radionuclide exposure effects to water snakes on a nuclear industrial site. Human and Ecological Risk Assessment, 16(2), 282–300. doi:10.1080/10807031003670337.

    Article  CAS  Google Scholar 

  • Newman, M. C., Alberts, J. J., & Greenhut, V. A. (1985). Aufwuchs—bioaccumulation of As, Cd, Cr, Cu, and Zn. Water Resources, 19(9), 1157–1165.

    CAS  Google Scholar 

  • O’Quinn, G.N. (2005). Using terrestrial arthropods as receptor species to determine trophic transfer of heavy metals in a riparian ecosystem [MS Thesis]. University of Georgia, Athens GA, USA

  • Phillips, D.L., & Gregg, J.W. (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia. 2003; 136(2): 261–9. doi:10.1007/s00442-003-1218-3.

    Google Scholar 

  • Phillips, D. L., Newsome, S. D., & Gregg, J. W. (2005). Combining sources in stable isotope mixing models: alternative methods. Oecologia, 144(4), 520–527. doi:10.1007/s00442-004-1816-8.

    Article  Google Scholar 

  • Pickett J.B. (1990). Heavy metal contamination in Tims Branch sediments. Aiken (SC). Westinghouse Savannah River Company. Report No.: OPS-RMT-900200.

  • Pickett, J.B., Colven, W.P., & Bledsoe, H.W. (1987). Environmental Information Document: M-Area settling basin and vicinity. Aiken (SC). E.I. du Pont de Nemours & Co. Report No.: DPST-85-703.

  • Punshon, T., Gaines, K. F., Bertsch, P. M., & Burger, J. (2003a). Bioavailability of uranium and nickel to vegetation in a contaminated riparian ecosystem. Environmental Toxicology and Chemistry, 22(5), 1146–1154.

    Article  CAS  Google Scholar 

  • Punshon, T., Gaines, K. F., & Jenkins, R. A., Jr. (2003b). Bioavailability and trophic transfer of sediment-bound Ni and U in a southeastern wetland system. Archives of Environmental Contamination and Toxicology, 44(1), 30–35. doi:10.1007/s00244-002-1213-4.

    Article  CAS  Google Scholar 

  • Reinhart, B.D. 2003. The use of small mammals as indicators of heavy metal bioavailability in a contaminated riparian zone [MS Thesis]. University of Georgia, Athens, Georgia USA

  • Rosing, M. N., Ben-David, M., & Barry, R. P. (1998). Analysis of stable isotope data: a K nearest-neighbors randomization test. The Journal of Wildlife Manage, 1(11), 380–388.

    Article  Google Scholar 

  • Rowe, C. L., Hopkins, W. A., & Coffman, V. R. (2001). Failed recruitment of southern toads (Bufo terrestris) in a trace element-contaminated breeding habitat: direct and indirect effects that may lead to a local population sink. Archives of Environmental Contamination and Toxicology, 40, 399–405.

    Article  CAS  Google Scholar 

  • Rowe, C. L., Heyes, A., & Hopkins, W. A. (2009). Effects of dietary vanadium on growth and lipid storage in a larval anuran: results from studies employing ad libitum and rationed feeding. Aquatic Toxicology, 91(2), 179–186. doi:10.1016/j.aquatox.2008.06.002.

    Article  CAS  Google Scholar 

  • Roy, V., Amyot, M., & Carigan, R. (2009a). Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients. Environmental Science and Technology, 43, 5605–5611.

    Article  CAS  Google Scholar 

  • Roy, V., Amyot, M., & Carigan R. (2009b). Seasonal methylmercury dynamics in water draining three beaver impoundments of varying age. Journal of Geophysical Research, 2009b, 114, G00C06.

  • Rudd, J. W. M. (1995). Sources of methyl mercury to freshwater ecosystems: a review. Water, Air, and Soil Pollution, 80, 697–713.

    Article  CAS  Google Scholar 

  • SAS Institute. (2006). SAS/STAT user’s guide. Version 9.1.3. Cary: SAS Institute.

    Google Scholar 

  • Serra, A., & Guasch, H. (2009). Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. The Science of the Total Environment, 407(19), 5274–5282. doi:10.1016/j.scitotenv.2009.06.008.

    Article  CAS  Google Scholar 

  • Snodgrass, J. W., Jagoe, C. H., Bryan, A. L., Brant, H. A., & Burger, J. (2000). Effects of trophic status and wetland morphology, hydroperiod, and water chemistry on mercury concentration in fish. Canadian Journal of Fisheries and Aquatic Science, 57, 171–180.

    Article  Google Scholar 

  • Snodgrass, J. W., Hopkins, W. A., Broughton, J., Gwinn, D., Baionno, J. A., & Burger, J. (2004). Species-specific responses of developing anurans to coal combustion wastes. Aquatic Toxicology, 66(2), 171–182. doi:10.1016/j.aquatox.2003.09.002.

    Article  CAS  Google Scholar 

  • Snodgrass, J. W., Hopkins, W. A., Jackson, B. P., Baionno, J. A., & Broughton, J. (2005). Influence of larval period on responses of overwintering green frog (Rana clamitans) larvae exposed to contaminated sediments. Environmental Toxicology and Chemistry, 24(6), 1508–1514.

    Article  CAS  Google Scholar 

  • Solomon, C. T., Carpenter, S. R., Cole, J. J., & Pace, M. L. (2007). Support of benthic invertebrates by detrital resources and current autochthonous primary production: results from a whole-lake 13C addition. Freshwater Biology, 53, 42–54. doi:10.1111/j.1365-2427.2007.01866.x.

    Google Scholar 

  • Sowder, A. G., Bertsch, P. M., & Morris, P. J. (1996). Partitioning and availability of uranium and nickel in contaminated riparian sediments. Journal of Environmental Quality, 32(3), 885–898.

    Google Scholar 

  • Sparling, D. W., Krest, S., & Ortiz-Santaliestra, M. (2006). Effects of lead-contaminated sediment on Rana sphenocephala tadpoles. Archives of Environmental Contamination & Toxicology, 51(3), 458–466. doi:10.1007/s00244-005-0243-0.

    Article  CAS  Google Scholar 

  • Sugg, D. W., Chesser, R. K., Brooks, J. A., & Grasman, B. T. (1995). The association of DNA damage to concentrations of mercury and radiocesium in largemouth bass. Environmental Toxicology and Chemistry, 14, 661–668.

    Article  CAS  Google Scholar 

  • Systat Inc. Systat 10: Statistics I. SPSS, Inc. Chicago. 2000.

  • Wellborn, J. V., & Robinson, G. A. (2010). Mutual predation in assembled communities of Odonate species. Ecology, 68(4), 921–927.

    Google Scholar 

Download references

Acknowledgements

This manuscript benefited from the comments of two anonymous reviewers. We thank David Kling for contributing his expertise to experimental design and implementation of this study. We also thank Gary Mills and Elizabeth Burgess for their insight into the project and assisting with water trace metal analysis, Tracye Murphy for conducting all trace metal analyses, and Tom Maddox for all stable isotope analysis. We thank Carol Eldridge for laboratory assistance. We followed an animal welfare protocol approved by the University of Georgia Institutional Animal Care and Use Committee (A2009 10-175-Y3-A0). This project was funded by the Area Completions Project (ACP) of SRNS through DOE Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation and was used in partial fulfillment of a Master’s of Science degree in the Department of Biological Sciences at Eastern Illinois University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen F. Gaines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, P.G., Gaines, K.F., Bryan, A.L. et al. Trophic dynamics of U, Ni, Hg and other contaminants of potential concern on the Department of Energy’s Savannah River Site. Environ Monit Assess 186, 481–500 (2014). https://doi.org/10.1007/s10661-013-3392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3392-z

Keywords

Navigation