Skip to main content
Log in

A fiber-optic redox sensor for the iron(III)–iron(II) transition

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A phenosafranine-containing Nafion film attached to the distal end of a fiber-optic probe forms a functional redox-sensitive optical sensor. The synthetic cationic photoactive dye phenosafranine, 3,7-diamino-5-phenylphenazinium chloride, responds with changes in light absorbance between its oxidized and reduced forms. This optical property persists when phenosafranine is sorbed into Nafion, a perfluorosulfonate anionic film. Optical properties of the sensor are similar to those seen by others in solution. At high redox conditions, such as an open nitrogen-purged aqueous pH 6.5 solution, optical absorbance of phenosafranine is high, while at low redox conditions, such as an aqueous pH 6.5 iron(II) solution, optical absorbance of phenosafranine is low. Titration of a closed pH 6.5 aqueous solution with a standard iron(II) solution lowers redox potential in a predictable manner and can be followed by the optical redox sensor in parallel with a commercial redox potential electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atteia, O., & Guillot, C. (2007). Factors controlling BTEX and chlorinated solvents plume length under natural attenuation conditions. Journal of Contaminant Hydrology, 90, 81–104. doi:10.1016/j.jconhyd.2006.09.012.

    Article  CAS  Google Scholar 

  • Bakker, E., & Qin, Y. (2006). Electrochemical sensors. Analytical Chemistry, 78, 3965–3983. doi:10.1021/ac060637m.

    Article  CAS  Google Scholar 

  • Barbieri, M., Carrera, J., Sanchez-Vila, X., Ayora, C., Cama, J., Köck-Schulmeyer, M., et al. (2011). Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material. Journal of Contaminant Hydrology, 126, 330–345. doi:10.1016/j.jconhyd.2011.09.003.

    Article  CAS  Google Scholar 

  • Borch, T., Kretzschmar, R., Kappler, A., van Cappellen, P., Ginder-Vogel, M., Voegelin, A., et al. (2010). Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science and Technology, 44, 15–23. doi:10.1021/es9026248.

    Article  CAS  Google Scholar 

  • Bowler, P. G., Duerben, B. I., & Armstrong, D. G. (2001). Wound microbiology and associated approaches to wound management. Clinical Microbiology Reviews, 14(2), 244–269.

    Article  CAS  Google Scholar 

  • Christensen, T. H., Bjerg, P. L., Banwart, S. A., Jakobsen, R., Heron, G., & Albrechtsen, H. (2000). Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, 45, 165–241. doi:10.1016/S0169-7722(00)00109-1.

    Article  CAS  Google Scholar 

  • Chudyk, W. (1989). Fiber optic methods for volatile organic compounds in groundwater. In N. M. Ram, R. F. Christman, & K. P. Cantor (Eds.), Significance and treatment of volatile organic compounds in water supplies (pp. 87–99). Chelsea: Lewis.

    Google Scholar 

  • Feidler, S., Vepraskas, M., & Richardson, J. (2007). Soil redox potential: importance, field measurements, and observations. Advances in Agronomy, 94, 1–54. doi:10.1016/S0065-2113(06)94001-2.

    Google Scholar 

  • Gopidas, K. R., & Kamat, P. V. (1991). Photochemistry in polymers. Photoinduced electron transfer between phenosafranine and triethylamine in perfluorosulfonate membrane. Journal of Physical Chemistry, 94, 4726–4727. doi:10.1021/j100374a064.

    Article  Google Scholar 

  • Hinchey, E. K., & Schaffner, L. C. (2005). An evaluation of electrode insertion techniques for measurement of redox potential in estuarine sediments. Chemosphere, 59, 703–710. doi:10.1016/j.chemosphere.2004.10.029.

    Article  CAS  Google Scholar 

  • Jones, B. D., & Ingle, J. D., Jr. (2005). Evaluation of redox indicators for determining sulfate-reducing and dechlorinating conditions. Water Research, 39, 4343–4354. doi:10.1016/j.watres.2005.09.006.

    Article  CAS  Google Scholar 

  • Kierat, R. M., Thaler, B. M. B., & Krämer, R. (2010). A fluorescent redox sensor with tuneable oxidation potential. Bioorganica Medical Chemistry Letter, 20, 1457–1459. doi:10.1016/j.bmcl.2009.03.171.

    Article  CAS  Google Scholar 

  • Komura, T., Niu, G. Y., Yamaguchi, T., & Asano, M. (2003). Redox and ionic-binding switched fluorescence of phenosafranine and thionine included in Nafion films. Electrochimica Acta, 48, 631–639. doi:10.1016/S0013-4686(02)00733-8.

    Article  CAS  Google Scholar 

  • Lemmon, T. L., Westall, J. C., & Ingle, J. D., Jr. (1996). Development of redox sensors for environmental applications based on immobilized redox indicators. Analytische Chemie, 68, 947–953. doi:10.1021/ac950885a.

    Article  CAS  Google Scholar 

  • Maineult, A., Bernabé, Y., & Ackerer, P. (2006). Detection of advected, reacting redox fronts from self-potential measurements. Journal of Contaminant Hydrology, 86, 32–52. doi:10.1016/j.jconhyd.2006.02.007.

    Article  CAS  Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H., Jr. (1991). Effect of redox potential and ph on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25, 1414–1419. doi:10.1021/es00020a008.

    Article  CAS  Google Scholar 

  • Miehr, R., Tratnyek, P. G., Bandstra, J. Z., Scherer, M. M., Alowitz, M. J., & Bylaska, E. J. (2004). Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate. Environmental Science and Technology, 38, 139–147. doi:10.1021/es034237h.

    Article  CAS  Google Scholar 

  • Newcombe, D. T., Cardwell, T. J., Cattrall, R. W., & Kolev, S. D. (1999). An optical redox chemical sensor based on ferroin immobilised in a Nafion® membrane. Analytica Chimica Acta, 401, 137–144. doi:10.1016/S0003-2670(99)00474-2.

    Article  CAS  Google Scholar 

  • Newcombe, D. T., Cardwell, T. J., Cattrall, R. W., & Kolev, S. D. (2000). An optical membrane redox chemical sensor for the determination of ascorbic acid. Laboratory Rob. Automated, 12(4), 200–204. doi:10.1002/1098-2728(2000)12:4<200::AID-LRA5>3.0.CO;2–2.

    Article  CAS  Google Scholar 

  • Owens, P. R., Wilding, L. P., Lee, L. M., & Herbert, B. E. (2005). Evaluation of platinum electrodes and three electrode potential standards to determine electrode quality. Soil Science Society American Journal, 69, 1541–1550. doi:10.2136/sssaj2003.0205.

    Article  CAS  Google Scholar 

  • Passos, M. L. C., Saraiva, M. L. M. F. S., & Lima, J. L. F. C. (2010). A thionine-based reversible redox sensor in a sequential injection system. Analytica Chimica Acta, 668, 41–46. doi:10.1016/j.aca.2010.01.060.

    Article  CAS  Google Scholar 

  • Ruiz-Haas, P., & Ingle, J. D., Jr. (2007). Monitoring redox conditions with flow-based and fiber-optic sensors based on redox indicators: application to reductive dehalogenation in a bioaugmented soil column. Geomicrobiology Journal, 24, 365–378. doi:10.1080/01490450701459226.

    Article  CAS  Google Scholar 

  • Ryu, J., Dahlgren, R. A., Gao, S., & Tanji, K. K. (2004). Characterization of redox processes in shallow groundwater of Owens Dry Lake, California. Environmental Science and Technology, 38, 5950–5957. doi:10.1021/es0306112.

    Article  CAS  Google Scholar 

  • Seiler, K., & Simon, W. (1992). Theoretical aspects of bulk optode membranes. Analytica Chimica Acta, 266, 73–87. doi:10.1016/0003-2670(92)85281-A.

    Article  CAS  Google Scholar 

  • Sotolongo, C. (2010), Fiber Optic Redox Sensors for In-Situ Environmental Sampling, M.S. thesis, Dept. of Civil & Env. Eng., Tufts University, Medford, MA.

  • Tratnyek, P. G., Reilkoff, T. E., Lemon, A. W., Scherer, M. M., Balko, B. A., Feik, L. M., et al. (2001). Visualizing redox chemistry: probing environmental oxidation. Reduction reactions with indicator dyes. Chemistry Educator, 6, 172–179. doi:10.1007/s00897010471a.

    Article  CAS  Google Scholar 

  • Van Bochove, E., Beauchemin, S., & Thériault, G. (2002). Continuous multiple measurement of soil redox potential using platinum microelectrodes. Soil Science Society American Journal, 66, 1813–1820. doi:10.2136/sssaj2002.1813.

    Article  Google Scholar 

  • Zhao, L., Wu, T., Lefèvre, J., Leray, I., & Delaire, J. A. (2009). Fluorimetric lead detection in a microfluidic device. Lab on a Chip, 9, 2818–2823. doi:10.1039/B904641K.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Tufts University Faculty Research Award and the Tufts University Summer Scholar program. The authors also thank Professor Rob White of the Tufts University Mechanical Engineering Department for the aid in film analysis. Portions of this work were presented at the ACS Annual Meeting, ENVR Division, Boston, MA on August 22, 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Chudyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudyk, W., Sotolongo, C. & Mueller, E. A fiber-optic redox sensor for the iron(III)–iron(II) transition. Environ Monit Assess 186, 415–420 (2014). https://doi.org/10.1007/s10661-013-3386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3386-x

Keywords

Navigation