Skip to main content
Log in

Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from aquatic animals (Lissotriton vulgaris, Pelophylax ridibundus, Emys orbicularis, Mauremys rivulata, and Natrix natrix) in Turkey (Kavak Delta). A total of 153 bacteria have been successfully isolated from cloaca and oral samples of the aquatic amphibians and reptilians which were found, namely, Aeromonas sp. (n = 29), Plesiomonas sp. (n = 7), Vibrio sp. (n = 12), Citrobacter sp. (n = 12), Enterobacter sp. (n = 11), Escherichia sp. (n = 22), Klebsiella sp. (n = 22), Edwardsiella sp. (n = 6), Hafnia sp. (n = 1), Proteus sp. (n = 19), Providencia sp. (n = 8), and Pseudomonas sp. (n = 4). In terms of antibiotic and heavy metal susceptibility testing, each isolate was tested against 12 antibiotics and 4 metals. There was a high incidence of resistance to cefoxitin (46.40 %), ampicillin (44.44 %), erythromycin (35.29 %), and a low incidence of resistance to gentamicin (6.53 %), kanamycin (8.49 %), chloramphenicol (9.15 %), and cefotaxime (10.45 %). The multiple antibiotic resistance index of each bacterial species indicated that bacteria from raised amphibians and reptiles have been exposed to tested antibiotics, with results ranging from 0 to 0.58. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from100 to >3,200 μg/mL. According to these results, a significant occurrence of bacteria in the internal organs of reptiles and amphibians, with a high incidence of resistance against antibiotics and heavy metals, may risk aquatic animals and the public health. These data appoint the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environment protection programs for amphibian and reptile species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single-disk method. American Journal of Clinical Pathology, 45, 493–496.

    CAS  Google Scholar 

  • Bastos, H. M., Lopes, L. F. L., Gattamorta, M. A., & Matushima, E. R. (2008). Prevalence of Enterobacteriaceae in Bothrops jararaca in São Paulo State: microbiological survey and antimicrobial resistance standards. Acta Scientarum - Biological Science, 30(3), 321–326.

    Google Scholar 

  • Clinical and Laboratory Standard Institute (CLSI). (2009). Performance standards for antimicrobial disk susceptibility tests. NCCLS Document M2-A7. National Committee for Clinical Laboratory Standards, 27(1), Wayne.

  • Ferronato, B. O., Marques, T. S., Souza, F. L., Verdade, L. M., & Matushima, E. R. (2009). Oral bacterial microbiota and traumatic injuries of free-ranging Phrynops geoffroanus (Testudines, Chelidae) in southeastern Brazil. Phllomedusa, 8(1), 19–25.

    Article  Google Scholar 

  • Filippi, E., D’Alterio, G. L., Brozzi, A. B., Micci, M., Politi, P., & Mantero, D. (2010). Note on the intestinal bacterial populations of free-living snakes in Italy. Herpetology Notes, 3, 263–265.

    Google Scholar 

  • Kaoud, H. A., & Eldahshan, A. R. (2010). Bioaccumulation of cadmium in the freshwater prawn Macrobrachium rosenbergii. Nature and Science, 8(4), 157–168.

    Google Scholar 

  • Hacioglu, N., & Dulger, B. (2011). Occurrence and antibiotic susceptibility of some bacteria in Saricay stream (Canakkale, Turkey). European Journal of Experimental Biology, 1(4), 158–163.

    Google Scholar 

  • Hacioglu, N., Dulger, B., Caprazli, T., & Tosunoglu, M. (2011). A Study on microflora in oral and cloaca of freshwater turtles (Emys orbicularis Linnaeus, 1758 – Mauremys rivulata Valenciennes, 1833) from Kavak Delta (Canakkale). Paper presented at the VI. International Symposium on Ecology and Environmental Problems, Antalya – Turkey, 17–20 November 2011

  • Kelkit, A., Akbulak, C., Erginal, A. E., & Ozcan, H. (2008). Tourism activities in wetlands: a case study of Kavak Delta (Canakkale, NW Turkey). Ohrid, Republic of Macedonia: Proceedings of the conference on water observation and information system for decision support.

    Google Scholar 

  • Krumpermann, P. H. (1983). Multiple antibiotic resistance indexing of E. coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 46(1), 165–170.

    Google Scholar 

  • Lee, S. W., Najiah, M., Wendy, W., Nadirah, M., & Faizah, S. H. (2009). Occurence of heavy metals and antibiotic resistance in bacteria from intestinal organs of American bullfrog (Rana catesbeiana) raised in Malaysia. Journal of Venomous Animals and Toxins including Tropical Diseases, 15(2), 353–358.

    Article  CAS  Google Scholar 

  • Matyar, F., Kaya, A., & Dincer, S. (2008). Antibacterial agents and heavy metal resistance in gram-negative bacteria isolated from seawater, shrimp, and sediment in Iskenderun Bay, Turkey. Science of the Total Environment, 407, 279–285.

    Article  CAS  Google Scholar 

  • Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C., & Yolken, R. H. (1999). Manual of clinical microbiology (7th ed.). Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  • Najiah, M., Lee, S. W., Wendy, W., Tee, L. W., Nadirah, M., & Faizah, S. H. (2009). Antibiotic resistance and heavy metals tolerance in gram-negative bacteria from diseased American Bullfrog (Rana catesbeiana) cultured in Malaysia. Agricultural Sciences in China, 8(10), 1270–1275.

    Article  Google Scholar 

  • Nies, D. H. (1999). Microbial heavy metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.

    Article  CAS  Google Scholar 

  • Ogbondeminu, F. S. (1993). The occurrence and distribution of enteric bacteria in fish and water of tropical ponds in Nigeria. Journal of Aquaculture in the Tropics, 8, 61–66.

    Google Scholar 

  • Ozcan, M., Kılıc, A., Kan, N. I., & Sarıeyyupoglu, M. (2006). A study on aerob bacteria in liver, spleen, kidney, and intestine of freshwater turtle (Mauremys caspica caspica Gmelin, 1774). Dogu Anadolu Bolgesi Arastirmalari, (DAUM), 5(1), 19–22.

    Google Scholar 

  • Santoro, M., Hernandez, G., Caballero, M., & Garcia, F. (2006). Aerobic bacterial flora of nesting fren turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica. Journal of Zoo and Wildlife Medicine, 37(4), 549–552.

    Article  Google Scholar 

  • Spain, A., & Alm, E. (2003). Implications of microbial heavy metal tolerance in the environment. Reviews in Undergraduate Research, 2, 1–6.

    Google Scholar 

  • Soccini, C., & Ferri, V. (2004). Bacteriological of Trachemys scripta elegans and Emys orbicularis in the pop plain (Italy). Biologia, Bratislava, 59/Suppl, 14, 201–207.

    Google Scholar 

  • Tee, L. W., & Najiah, M. (2011). Antibiogram and heavy metal tolerance of Bullfrog bacteria in Malaysia. Open Veterinary Journal, 1, 39–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurcihan Hacioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hacioglu, N., Tosunoglu, M. Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species. Environ Monit Assess 186, 407–413 (2014). https://doi.org/10.1007/s10661-013-3385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3385-y

Keywords

Navigation