Skip to main content
Log in

Wild boar (Sus scrofa) as a bioindicator of organochlorine compound contamination in terrestrial ecosystems of West Pomerania Province, NW Poland

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study was to detect the presence and determine the residue levels of DDT, lindane, endrin and polychlorinated biphenyls (PCBs) in the liver of wild boars from the area of West Pomerania, NW Poland; to determine the activity of glutathione S-transferase (GST) as a biomarker of biological response and to assess the toxicological risk for consumers of the wild boar offal. The presence of pesticide residues and PCBs was found in all examined liver samples. The highest concentration was observed for endrin, and then, the descending order was PCBs >DDTs >lindane >dl-PCBs. The mean hepatic concentrations of endrin, PCBs, DDTs and lindane were 117.28, 78.59, 67.95 and 7.24 ng/g lipid weight, respectively. Among the dioxin-like PCB congeners, 118 and 156 were dominant in liver samples. The mean toxic equivalent (TEQ) level calculated for dl-PCBs was 2.10 ± 1.11 pg WHO-PCB-TEQ/g. There was a statistically significant (p < 0.05) negative correlation between the concentration of lindane, DDTs and PCBs (as a sum of indicator congeners) in the liver and in the activity of GST. However, GST activities showed no significant correlation with any of the dl-PCBs. In five boar liver samples, the levels of certain organochlorine compounds exceeded the maximum residue levels (MRLs). In one sample, the MRLs were exceeded simultaneously for PCBs, endrin and DDTs and in another one—for endrin and DDTs. In the remaining three samples, only PCB levels were exceeded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baubet, E., Bonenfant, C., & Brandy, S. (2004). Diet of the wild boar in the French Alps. Galemys, S16, 101–113.

    Google Scholar 

  • Bouwman, H., van den Berg, H., & Kylin, H. (2011). DDT and malaria prevention: addressing the paradox. Environmental Health Perspectives, 119(6), 744–747.

    Article  CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive assay of protein utilizing the principle of dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Breivik, K., Sweetman, A., Pacyna, J. M., & Jones, K. C. (2002). Towards a global historical emission inventory for selected PCB congeners—a mass balance approach 1. Global production and consumption. The Science of the Total Environment, 290(1), 181–198.

    Article  CAS  Google Scholar 

  • Dip, R., Hegglin, D., Deplazes, P., Dafflon, O., Koch, H., & Naegeli, H. (2003). Age-and sex-dependent distribution of persistent organochlorine pollutants in urban foxes. Environmental Health Perspectives, 111(13), 1608–1612.

    Article  CAS  Google Scholar 

  • Dvorská, A., Lammel, G., & Holoubek, I. (2009). Recent trends of persistent organic pollutants in air in central Europe—Air monitoring in commination with air mass trajectory statistics as a tool to study the effectivity of regional chemical policy. Atmospheric Environment, 43, 1280–1287.

    Article  Google Scholar 

  • Falandysz, J. (1999). Polichlorinated biphenyls (PCBs) in an environment: chemistry, toxicity, analysis, concentrations and risk assessment. Gdańsk: Fundacja Rozwoju Uniwersytetu Gdańskiego.

    Google Scholar 

  • Fitzpatrick, P. J., O’Halloran, J., Sheehan, D., & Walsh, A. R. (1997). Assessment of a glutathione S-transferase and related proteins in the gill and digestive gland of Mytilus edulis (L.), as potential organic pollution biomarkers. Biomarkers, 2, 51–56.

    Article  CAS  Google Scholar 

  • Genov, P. (1981). Food composition of wild boar in North-eastern and Western Poland. Acta Theriologica, 26, 185–205.

    Google Scholar 

  • Greco, L., Serrano, R., Blanes, M., Serrano, E., & Capri, E. (2010). Bioaccumulation markers and biochemical responses in European sea bass (Dicentrarchus labrax) raised under different environmental conditions. Ecotoxicology and Environmental Safety, 73, 38–45.

    Article  CAS  Google Scholar 

  • Gregoraszczuk, E., Augustowska, K., & Ptak, A. (2004). Environmental xenoestrogens causes endocrine alterations associated with early fetal loss. Polish Journal of Endocrinology, 6, 819–824.

    Google Scholar 

  • Hamed, R. R., Farid, N. M., Elowa, S. E., & Asdalla, A. M. (2003). Glutathione related enzyme levels of freshwater fish as bioindicators of pollution. Environmentalist, 23, 313–322.

    Article  Google Scholar 

  • Hoekstra, P. F., Braune, B. M., Wong, C. S., Williamson, M., Elkin, B., & Muir, D. C. (2003). Profile of persistent chlorinated contaminants, including selected chiral compounds, in wolverine (Gulo gulo) livers from the Canadian Arctic. Chemosphere, 53(5), 551–560.

    Article  CAS  Google Scholar 

  • Holoubek, I., Klánová, J., Jarkovský, J., Kubík, V., & Helešic, J. (2007). Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic. Part II Aquatic and terrestrial environments 1996–2005. Journal of Environmental Monitoring, 9, 564–571.

    Article  CAS  Google Scholar 

  • Hoshi, H., Minamoto, N., Iwata, H., Shiraki, K., Tatsukawa, R., Tanabe, S., et al. (1998). Organochlorine pesticides and polychlorinated biphenyl congeners in wild terrestrial mammals and birds from Chubu region, Japan: interspecies comparison of the residue levels and compositions. Chemosphere, 36(15), 3211–3221.

    Article  CAS  Google Scholar 

  • Jaward, F., Farrar, N., Harner, T., Sweetman, A., & Jones, K. (2004). Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe. Environmental Science and Technology, 38(1), 34–41.

    Article  CAS  Google Scholar 

  • Kocan, A., Petrik, J., Jursa, S., Chovancova, J., & Drobna, B. (2001). Environmental contamination with polychlorinated biphenyls in the area of their former manufacture in Slovakia. Chemosphere, 43(4–7), 595–600.

    Article  CAS  Google Scholar 

  • Kumar, K., Priya, M., Sajwan, K., Kõlli, R., & Roots, O. (2009). Residues of persistent organic pollutants in Estonian soils (1964-2006). Estonian Journal of Earth Sciences, 58(2), 109–123.

    Article  Google Scholar 

  • Langer, P. (2010). The impacts of organochlorines and other persistent pollutants on thyroid and metabolic health. Frontiers in Neuroendocrinology, 31(4), 497–518.

    Article  CAS  Google Scholar 

  • Naccari, F., Giofrè, F., Licata, P., Martino, D., Calò, M., & Parisi, N. (2004). Organochlorine pesticides and PCBs in wild boars from Calabria (Italy). Environmental Monitoring and Assessment, 96(1–3), 191–202.

    Article  CAS  Google Scholar 

  • Naso, B., Zaccaroni, A., Perrone, D., Ferrante, M., Severino, L., Stracciari, G., et al. (2004). Organochlorine pesticides and polychlorinated biphenyls in European roe deer Capreolus capreolus resident in a protected area in Northern Italy. The Science of the Total Environment, 328(1–3), 83–93.

    Article  CAS  Google Scholar 

  • Richardson, K. L., Lopez Castro, M., Gardne, S. C., & Schlenk, D. (2010). Polychlorinated biphenyls and biotransformation enzymes in three species of sea turtles from the Baja California Peninsula of Mexico. Archives of Environmental Contamination and Toxicology, 58(1), 183–193.

    Article  CAS  Google Scholar 

  • Rolecki, R. (2002). Toxicological characteristics of permanent organic pollutants and routes of human exposure Report GF-POL-INV-R15 under the GEF project GF/POL/01/004. http://ios.info.pl/gef/doc/GF-POL-INV-R15.PDF. Accessed 12.11.2002.

  • Routti, H., Letcher, R., Arukwe, A., van Bavel, B., Yoccoz, N., Chu, S., et al. (2008). Biotransformation of PCBs in relation to phase I and II xenobiotic-metabolizing enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea. Environmental Science and Technology, 42(23), 8952–8958.

    Article  CAS  Google Scholar 

  • Růžičková, P., Klánová, J., Čupr, P., Lammel, G., & Holoubek, I. (2008). An assessment of air-soil exchange of polychlorinated biphenyls and organochlorine pesticides across Central and Southern Europe. Environmental Science and Technology, 42(1), 179–185.

    Article  Google Scholar 

  • Safe, S. (1994). Polychlorinated biphenyls (PCBs) environmental impact, biochemical and toxic responses, and implication for risk assessment. Critical Reviews in Toxicology, 24(2), 87–149.

    Article  CAS  Google Scholar 

  • Sheehan, D., Meade, G., Foley, V. M., & Dowd, C. A. (2001). Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 360, 1–16.

    Article  CAS  Google Scholar 

  • Shore, R., Casulli, A., Bologov, V., Wienburg, C., Afsar, A., Toyne, P., et al. (2001). Organochlorine pesticide, polychlorinated biphenyls and heavy metal concetrations in wolves (Canis lapus L.) from north-west Russia. The Science of the Total Environment, 280(1–3), 45–54.

    Article  CAS  Google Scholar 

  • Smith, A. G. (1991). Chlorinated hydrocarbon insecticides. In W. J. Hayes Jr. & E. R. Laws Jr. (Eds.), Handbook of pesticide toxicology. Volume 2, Classes of pesticides (pp. 731–916). Toronto: Academic.

    Google Scholar 

  • Struciński, P. (2009). 1,2,3,4,5,6-hexachlorocyclohexane. Podstawy i Metody Oceny Środowiska Pracy, 3(61), 75–126.

    Google Scholar 

  • Suutari, A., Ruokojärvi, P., Hallikainen, A., & Laaksonen, S. (2009). Polychlorinated dibenzo-p-dioxins, dibenzofurans, and polychlorinated biphenyls in semi-domesticated reindeer (Rangifer tarandus tarandus) and wild moose (Alces alces) meat in Finland. Chemosphere, 75(5), 617–622.

    Article  CAS  Google Scholar 

  • Suutari, A., Hallikainen, A., Ruokojärvi, P., Kiviranta, H., Nieminen, M., & Laaksonen, S. (2012). Persistent organic pollutants in Finnish reindeer (Rangifer tarandus tarandus L.) and moose (Alces alces). Acta Veterinaria Scandinavica, 54(1), 11.

    Article  Google Scholar 

  • Tian, X., Song, E., Pi, R., Zhu, R., Liu, L., Ma, X., et al. (2012). Polychlorinated biphenyls and their different level metabolites as inhibitors of glutathione S-transferase isoenzymes. Chemico-Biological Interactions, 198(1–3), 1–8.

    Article  CAS  Google Scholar 

  • Tomza, A., Witczak, A., & Ciereszko, W. (2006). Uptake of polychlorinated biphenyl congeners in freshwater mussels Anodonta complanata from the lower Odra River. Polish Journal of Environmental Studies, 15(4), 603–608.

    CAS  Google Scholar 

  • Tomza-Marciniak, A. (2013). Residues of organochlorine pesticides and PCBs in wild boars from an area which once contained a landfill of obsolete pesticides and other chemicals. Fresenius Environmental Bulletin (in press).

  • Tomza-Marciniak, A., & Witczak, A. (2010). Distribution of endocrine-disrupting pesticides in water and fish from the Oder River, Poland. Acta Ichthyologica et Piscatoria, 40(1), 1–9.

    Article  Google Scholar 

  • Tomza-Marciniak, A., Pilarczyk, B., Wieczorek-Dąbrowska, M., Bąkowska, M., Witczak, A., & Hendzel, D. (2011). Polychlorinated biphenyl (PCB) residues in European roe deer (Capreolus capreolus) and red deer (Cervus elaphus) from north-western Poland. Chemistry and Ecology, 27(6), 493–501.

    Article  CAS  Google Scholar 

  • Tomza-Marciniak, A., Pilarczyk, B., Bąkowska, M., Tylkowska, A., Marciniak, A., Ligocki, M., et al. (2012). Polychlorinated biphenyl (PCBs) residues in suburban red foxes (Vulpes vulpes) from West Pomerania region (Poland)—preliminary study. Polish Journal of Environmental Studies, 24(1), 193–199.

    Google Scholar 

  • Turrio-Baldassarri, L., Alivernini, S., Carasi, S., Casella, M., Fuselli, S., Iacovella, N., et al. (2009). PCB, PCDD and PCDF contamination of food of animal origin as the effect of soil pollution and the cause of human exposure in Brescia. Chemosphere, 76(2), 278–285.

    Article  CAS  Google Scholar 

  • van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W. F. M., Fiedler, H., et al. (2006). The 2005 World Health Organization revaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Science, 93, 223–241.

    Article  Google Scholar 

  • Wania, F., & Mackay, D. (1996). Tracking the distribution of persistent organic pollutants. Environmental Science and Technology, 30, 390–396.

    Article  Google Scholar 

  • WHO. (1992). Endrin (Environmental Health Criteria 130). Geneva: World Health Organization.

    Google Scholar 

  • Witczak, A., & Abdel-Gawad, H. (2012). Comparison of organochlorine pesticides and polychlorinated biphenyls residues in vegetables, grain and soil from organic and conventional farming in Poland. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 47(4), 343–354.

    Article  CAS  Google Scholar 

  • Zasadowski, A., Wyszyńska, A., & Wysoki, A. (2003). Evaluation of the contamination degree of roe-deer with cadmium and polychlorinated biphenyls in Warmia and Mazury district. Polish Journal of Veterinary Science, 6, 93–97.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Ms Diana Hendzel for help in obtaining material for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Tomza-Marciniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomza-Marciniak, A., Marciniak, A., Pilarczyk, B. et al. Wild boar (Sus scrofa) as a bioindicator of organochlorine compound contamination in terrestrial ecosystems of West Pomerania Province, NW Poland. Environ Monit Assess 186, 229–238 (2014). https://doi.org/10.1007/s10661-013-3368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3368-z

Keywords

Navigation