Skip to main content

An object-based image analysis approach for aquaculture ponds precise mapping and monitoring: a case study of Tam Giang-Cau Hai Lagoon, Vietnam

Abstract

Monitoring and mapping shrimp farms, including their impact on land cover and land use, is critical to the sustainable management and planning of coastal zones. In this work, a methodology was proposed to set up a cost-effective and reproducible procedure that made use of satellite remote sensing, object-based classification approach, and open-source software for mapping aquaculture areas with high planimetric and thematic accuracy between 2005 and 2008. The analysis focused on two characteristic areas of interest of the Tam Giang-Cau Hai Lagoon (in central Vietnam), which have similar farming systems to other coastal aquaculture worldwide: the first was primarily characterised by locally referred “low tide” shrimp ponds, which are partially submerged areas; the second by earthed shrimp ponds, locally referred to as “high tide” ponds, which are non-submerged areas on the lagoon coast. The approach was based on the region-growing segmentation of high- and very high-resolution panchromatic images, SPOT5 and Worldview-1, and the unsupervised clustering classifier ISOSEG embedded on SPRING non-commercial software. The results, the accuracy of which was tested with a field-based aquaculture inventory, showed that in favourable situations (high tide shrimp ponds), the classification results provided high rates of accuracy (>95 %) through a fully automatic object-based classification. In unfavourable situations (low tide shrimp ponds), the performance degraded due to the low contrast between the water and the pond embankments. In these situations, the automatic results were improved by manual delineation of the embankments. Worldview-1 necessarily showed better thematic accuracy, and precise maps have been realised at a scale of up to 1:2,000. However, SPOT5 provided comparable results in terms of number of correctly classified ponds, but less accurate results in terms of the precision of mapped features. The procedure also demonstrated high degrees of reproducibility because it was applied to images with different spatial resolutions in an area that, during the investigated period, did not experience significant land cover changes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Alexandridis, T. K., Topaloglou, C. A., Lazaridou, E., & Zalidis, G. C. (2008). The performance of satellite images in mapping aquacultures. Ocean & Coastal Management, 51(8–9), 638–644.

    Article  Google Scholar 

  • Aubrecht, C., Steinnocher, K., Hollaus, M., & Wagner, W. (2009). Integrating earth observation and GIScience for high resolution spatial and functional modeling of urban land use. Computers, Environment and Urban Systems, 33(1), 15–25. doi:10.1016/j.compenvurbsys.2008.09.007.

    Article  Google Scholar 

  • Binh, T., Vromant, N., Hung, N., Hens, L., & Boon, E. (2005). Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau Peninsula, Vietnam. Environment, Development and Sustainability, 7(4), 519–536.

    Article  Google Scholar 

  • Bins, L. S. A., Fonseca, L. M. G., Erthal, G. J., & Mitsuo II, F. Satellite imagery segmentation: a region growing approach. In 8th Brazilian Symposium on Remote Sensing, 1419 April, Salvador, Bahia, Brazil., 1996 (Vol. Available on CD-ROM, pp. 677–680).

  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. doi:10.1016/j.isprsjprs.2009.06.004.

    Article  Google Scholar 

  • Blaschke, T., Lang, S., & Hay, G. J. (2008). Object-Based Image Analysis. Spatial Concepts for Knowledge - Driven Remote Sensing Applications (Vol. XVIII, Lecture Notes in Geoinformation and Cartography): Springer-Verlag Berlin Heidelberg.

  • Boyd, C. E. (2003). Guidelines for aquaculture effluent management at the farm-level. Aquaculture, 226(1–4), 101–112.

    Article  CAS  Google Scholar 

  • Câmara, G., Souza, R. C. M., Freitas, U. M., & Garrido, J. (1996). Spring: Integrating remote sensing and GIS by object-oriented data modelling. Computers and Graphics, 20(3), 395–403. doi:10.1016/0097-8493(96)00008-8.

    Article  Google Scholar 

  • Chen, G., Hay, G. J., Carvalho, L. M. T., & Wulder, M. A. (2012). Object-based change detection. International Journal of Remote Sensing, 33(14), 4434–4457. doi:10.1080/01431161.2011.648285.

    Article  Google Scholar 

  • Chen, J., Pan, D., & Mao, Z. (2009). Image object detectable in multiscale analysis on high resolution remotely sensed imagery. International Journal of Remote Sensing, 30(14), 3585–3602. doi:10.1080/01431160802585348.

    Article  Google Scholar 

  • Congalton, R. G., & Green, K. (2009). Assessing the accuracy of remotely sensed data: Principles and practices, 2nd edn. Boca Raton: CRC.

    Google Scholar 

  • Coulthard, S. (2008). Adapting to environmental change in artisanal fisheries—Insights from a South Indian Lagoon. Global Environmental Change, 18(3), 479–489. doi:10.1016/j.gloenvcha.2008.04.003.

    Article  Google Scholar 

  • de Graaf, G., Kamal, M. M., Martin, T. C., & Schepel, M. (2002). Remote sensing techniques for detecting and mapping aquaculture ponds in Bangladesh. In Proceedings of 2nd International Symposium on GIS/Spatial Analyses in Fishery and Aquatic Sciences, Brighton, UK.

  • Dey, V., Zhang, Y., Zhong, M., & Engineering, G. (2010). A review on image segmentation techniques with remote sensing perspective. In W. Wagner, & B. Székely (Eds.), ISPRS TC VII Symposium100 Years ISPRS, IAPRS, Vienna, Austria (Vol. 38, pp. 31–42).

  • Disperati, L., Virdis, S., & Sarti, M. (2008). Land use/cover change in the Tam Giang—Cau Hai Lagoon (Central Vietnam) by means of SPOT 5, Aster and Landsat images. In, 33rd International Geological Congress, Oslo, Norway, 2010.

  • Dwivedi, R. S., & Kandrika, S. (2005). Delineation and monitoring of aquaculture areas using multi-temporal space-borne multispectral data. Current Science, 89(8), 1414–1421.

    Google Scholar 

  • Espindola, G. M., Camara, G., Reis, I. A., Bins, L. S., & Monteiro, A. M. (2006). Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. International Journal of Remote Sensing, 27(14), 3035–3040. doi:10.1080/01431160600617194.

    Article  Google Scholar 

  • FAO. (2012a). FAO year book—Fishery and aquaculture statistics 2010. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • FAO. (2012b). The State of World Fisheries and Aquaculture 2012. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Fezzardi, D. (2006a). Socio-economic baseline survey of hue lagoon. Part I: Survey report. In I. F. Project (Ed.), IMOLA Project (p. 76). Hanoi: The Network of Aquaculture Centres in Asia-Pacific (NACA) for the Food and Agriculture Organization.

  • Fezzardi, D. (2006b). Socio-economic baseline survey of Hue Lagoon. Part II: Methodology and detailed survey results. In I. F. Project (Ed.), IMOLA Project (p. 99). Hanoi: The Network of Aquaculture Centres in Asia-Pacific (NACA) for the Food and Agriculture Organization.

  • Frignani, M., Piazza, R., Bellucci, L. G., et al. (2007). Polychlorinated biphenyls in sediments of the Tam Giang-Cau Hai Lagoon, Central Vietnam. Chemosphere, 67(9), 1786–1793.

    Article  CAS  Google Scholar 

  • Gao, Y., Mas, J. F., Kerle, N., & Navarrete Pacheco, J. A. (2011). Optimal region growing segmentation and its effect on classification accuracy. International Journal of Remote Sensing, 32(13), 3747–3763. doi:10.1080/01431161003777189.

    Article  Google Scholar 

  • Giap, D. H., Yi, Y., & Yakupitiyage, A. (2005). GIS for land evaluation for shrimp farming in Haiphong of Vietnam. Ocean & Coastal Management, 48(1), 51–63. doi:10.1016/j.ocecoaman.2004.11.003.

    Article  Google Scholar 

  • Giuliani, S., Sprovieri, M., Frignani, M., et al. (2008). Presence and origin of polycyclic aromatic hydrocarbon in sediments of nine coastal lagoons in central Vietnam. Marine Pollution Bulletin, 56(8), 1504–1512.

    Article  CAS  Google Scholar 

  • Hay, G. J., Blaschke, T., Marceau, D. J., & Bouchard, A. (2003). A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry and Remote Sensing, 57(5–6), 327–345. doi:10.1016/s0924-2716(02)00162-4.

    Article  Google Scholar 

  • Hossain, M. S., Chowdhury, S. R., Das, N. G., Sharifuzzaman, S. M., & Sultana, A. (2009). Integration of GIS and multicriteria decision analysis for urban aquaculture development in Bangladesh. Landscape and Urban Planning, 90(3–4), 119–133.

    Article  Google Scholar 

  • IMOLA (2006). Regulation on the environmental management of centralized shrimp culture areas in Thua Thien Hue Province (p. 7). Integrated management of the lagoon activities. FAO GCP/VIE/029/ITA Project. Huè: Food and Agricultural Organization of the United Nations FAO.

  • IMOLA (2007). Survey/inventory the fisheries and aquaculture activities (with the support of GIS) (p. 96). Integrated management of the lagoon activities. FAO GCP/VIE/029/ITA Project. Huè: Food and Agricultural Organization of the United Nations FAO.

  • IMOLA (2008). Assessment of water and sediment quality of Tam Giang-Cau Hai lagoon 2006–2007 (p. 105). Integrated management of the lagoon activities. FAO GCP/VIE/029/ITA Project. Huè: Food and Agricultural Organization of the United Nations FAO.

  • Jayanthi, M. (2011). Monitoring brackishwater aquaculture development using multi-spectral satellite data and GIS—A case study near Pichavaram mangroves south-east coast of India. Indian Journal of Fisheries, 58(1), 85–90.

    Google Scholar 

  • Kai, L., & Muller, J.-P. (1991). Segmenting satellite imagery: a region growing scheme. In Geoscience and Remote Sensing Symposium, 1991 (IGARSS '91). Proceedings, 1991 I.E. International, Helsinki (Vol. 2, pp. 1075–1078).

  • Kapetsky, J. M., & Aguilar-Manjarrez, J. (2007). Geographic information systems, remote sensing and mapping for the development and management of marine aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 458, 125.

  • Karthik, M., Suri, J., Saharan, N., & Biradar, R. S. (2005). Brackish water aquaculture site selection in Palghar Taluk, Thane district of Maharashtra, India, using the techniques of remote sensing and geographical information system. Aquacultural Engineering, 32(2), 285–302.

    Article  Google Scholar 

  • Kawakubo, F. S., Morato, R. G., Midaglia, C. L., Gomide, M. L. C., & Luchiari, A. (2009). Land-use and vegetation-cover mapping of an indigenous land area in the state of Mato Grosso (Brazil) based on spectral linear mixing model, segmentation and region classification. Geocarto International, 24(2), 165–175. doi:10.1080/10106040802488534.

    Article  Google Scholar 

  • Kawakubo, F. S., Morato, R. G., Nader, R. S., & Luchiari, A. (2011). Mapping changes in coastline geomorphic features using Landsat TM and ETM+imagery: examples in southeastern Brazil. International Journal of Remote Sensing, 32(9), 2547–2562. doi:10.1080/01431161003698419.

    Article  Google Scholar 

  • Kirui, K. B., Kairo, J. G., Bosire, J., Viergever, K. M., Rudra, S., Huxham, M., et al. (2013). Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean & Coastal Management, doi:10.1016/j.ocecoaman.2011.12.004.

  • Liu, D., & Xia, F. (2010). Assessing object-based classification: Advantages and limitations. Remote Sensing Letters, 1(4), 187–194.

    Article  Google Scholar 

  • Longdill, P. C., Healy, T. R., & Black, K. P. (2008). An integrated GIS approach for sustainable aquaculture management area site selection. Ocean & Coastal Management, 51(8–9), 612–624.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  • Marconi, M., Sarti, M., & Marincioni, F. (2010). Sustainability assessment of traditional fisheries in Cau Hai lagoon (South China Sea). Marine Environmental Research, 70(3–4), 253–263. doi:10.1016/j.marenvres.2010.04.009.

    Article  CAS  Google Scholar 

  • Meaden, G.J., & Aguilar-Manjarrez, J. (2013). Advances in geographic information systems and remote sensing for fisheries and aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 552, 425.

  • Meinel, G., & Neubert, M. A (2004). comparison of segmentation programs for high resolution remote sensing data. In Proceedings of 20th ISPRS Congress, Istanbul, Turkey.

  • Ministry of Fisheries and The World Bank (2005). Vietnam Fisheries and Aquaculture Sector Study Final Report (p. 141). Vietnam’s Ministry of Fisheries (MOFi) and the World Bank Group.

  • Möller, M., Lymburner, L., & Volk, M. (2007). The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation, 9(3), 311–321. doi:10.1016/j.jag.2006.10.002.

    Article  Google Scholar 

  • NASO (2012). National Aquaculture Sector Overview (NASO). http://www.fao.org/fishery/naso-maps/naso-home/en/. Accessed 26th June 2013.

  • Navulur, K. (2006). Multispectral image analysis using the object-oriented paradigm. Boca Raton: CRC–Taylor & Francis Group.

    Book  Google Scholar 

  • Nguyen, H. N. (2010). Changes in surface water quality and community-based resources management of the Tam Giang Lagoon, Central Vietnam. Asian Journal on Energy and Environment, 11(02), 77–89.

    Google Scholar 

  • Oliveira, F. S. C., Kampel, M., & Amaral, S. (2008). Multitemporal assessment of the geomorphologic evolution of the Restinga of Marambaia, Rio de Janeiro, Brazil. International Journal of Remote Sensing, 29(19), 5585–5594. doi:10.1080/01431160802061696.

    Article  Google Scholar 

  • Pattanaik, C., & Narendra Prasad, S. (2011). Assessment of aquaculture impact on mangroves of Mahanadi delta (Orissa), East coast of India using remote sensing and GIS. Ocean & Coastal Management, 54(11), 789–795. doi:10.1016/j.ocecoaman.2011.07.013.

    Article  Google Scholar 

  • Paul, B. G., & Vogl, C. R. (2013). Organic shrimp aquaculture for sustainable household livelihoods in Bangladesh. Ocean & Coastal Management, 71, 1–12. doi:10.1016/j.ocecoaman.2012.10.007.

  • Pho Hoang Han, M. M. M. (2007). Fisheries development in Vietnam: A case study in the exclusive economic zone. Ocean & Coastal Management, 50(9), 699–712.

    Article  Google Scholar 

  • Platt, R. V., & Rapoza, L. (2008). An evaluation of an object-oriented paradigm for land use/land cover classification. The Professional Geographer, 60(1), 87–100. doi:10.1080/00330120701724152.

    Article  Google Scholar 

  • Quintano, C., Fernández-Manso, A., Fernández-Manso, O., & Shimabukuro, Y. E. (2006). Mapping burned areas in Mediterranean countries using spectral mixture analysis from a uni-temporal perspective. International Journal of Remote Sensing, 27(4), 645–662. doi:10.1080/01431160500212195.

    Article  Google Scholar 

  • Quintano, C., Shimabukuro, Y. E., Fernández, A., & Delgado, J. A. (2005). A spectral unmixing approach for mapping burned areas in Mediterranean countries. International Journal of Remote Sensing, 26(7), 1493–1498. doi:10.1080/01431160412331330220.

    Article  Google Scholar 

  • Radiarta, I. N., Saitoh, S. I., & Yasui, H. (2011). Aquaculture site selection for Japanese kelp (Laminaria japonica) in southern Hokkaido, Japan, using satellite remote sensing and GIS-based models. ICES Journal of Marine Science, 68(4), 773–780. doi:10.1093/icesjms/fsq163.

    Article  Google Scholar 

  • Rajitha, K., Mukherjee, C. K., Vinu Chandran, R., & Prakash Mohan, M. M. (2010). Land-cover change dynamics and coastal aquaculture development: a case study in the East Godavari delta, Andhra Pradesh, India using multi-temporal satellite data. International Journal of Remote Sensing, 31(16), 4423–4442. doi:10.1080/01431160903277456.

    Article  Google Scholar 

  • Rizzi, R., Rudorff, B. F. T., Shimabukuro, Y. E., & Doraiswamy, P. C. (2006). Assessment of MODIS LAI retrievals over soybean crop in Southern Brazil. International Journal of Remote Sensing, 27(19), 4091–4100. doi:10.1080/01431160600851850.

    Article  Google Scholar 

  • Sakamoto, T., Van Phung, C., Kotera, A., Nguyen, K. D., & Yokozawa, M. (2009). Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery. Landscape and Urban Planning, 92(1), 34–46. doi:10.1016/j.landurbplan.2009.02.002.

    Article  Google Scholar 

  • Satapathy, D. R., Krupadam, R. J., Kumar, L. P., & Wate, S. R. (2007). The application of satellite data for the quantification of mangrove loss and coastal management in the Godavari estuary, East Coast of India. Environmental Monitoring and Assessment, 134(1–3), 453–469. doi:10.1007/s10661-007-9636-z.

    Article  CAS  Google Scholar 

  • Seetha, M., MuraliKrishna, I. V., Deekshatulu, B. L., Malleswari Nagaratna, B. L., & Hegde, P. (2008). Artificial neural networks and other methods of image classification. Journal of Theoretical and Applied Information Technology, 4(11), 1039–1053.

    Google Scholar 

  • Shahid, M. A., Pramanik, M. A. H., Jabbar, M. A., & Ali, S. (1992). Remote sensing application to study the coastal shrimp farming area in Bangladesh. Geocarto International, 7(2), 5–13. doi:10.1080/10106049209354361.

    Article  Google Scholar 

  • Shimabukuro, Y. E., Duarte, V., Arai, E., et al. (2009). Fraction images derived from Terra Modis data for mapping burnt areas in Brazilian Amazonia. International Journal of Remote Sensing, 30(6), 1537–1546. doi:10.1080/01431160802509058.

    Article  Google Scholar 

  • Smith, G., & Brennan, R. E. (2012). Losing our way with mapping: Thinking critically about marine spatial planning in Scotland. Ocean & Coastal Management, 69, 210–216. doi:10.1016/j.ocecoaman.2012.08.016.

    Article  Google Scholar 

  • Sridhar, P. N., Surendran, A., & Ramana, I. V. (2008). Auto extraction technique based digital classification of saltpans and aquaculture plots using satellite data. International Journal of Remote Sensing, 29(2), 313–323. doi:10.1080/01431160701250374.

    Article  Google Scholar 

  • Steckler, C., Niemann, K. O., & Flaherty, M. S. (2003). Using radarsat to detect and monitor stationary fishing gear and aquaculture gear on the eastern Gulf of Thailand. In Geoscience and Remote Sensing Symposium, 2003 (IGARSS '03). Proceedings. 2003 I.E. International, 21–25 July 2003 (Vol. 6, pp. 4016–4018).

  • Szuster, B. W., Steckler, C., & Kullavanijaya, B. (2008). Detecting and managing coastal fisheries and aquaculture gear using satellite radar imagery. Coastal Management, 36(3), 318–329. doi:10.1080/08920750801968330.

    Article  Google Scholar 

  • Thu, P. M., & Populus, J. (2007). Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam. Estuarine, Coastal and Shelf Science, 71(1–2), 98–109.

    Article  Google Scholar 

  • Travaglia, C., Profeti, G., Aguilar-Manjarrez, J., & Lopez, N. A. (2004). Mapping coastal aquaculture and fisheries structures by satellite imaging radar: Case study of the Lingayen Gulf, the Philippines (FAO Fisheries Technical Paper). Rome: Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Tuan, T. H., Van Xuan, M., Nam, D., & Navrud, S. (2009). Valuing direct use values of wetlands: A case study of Tam Giang-Cau Hai lagoon wetland in Vietnam. Ocean & Coastal Management, 52(2), 102–112. doi:10.1016/j.ocecoaman.2008.10.011.

    Article  Google Scholar 

  • Van Tuyen, T., Armitage, D., & Marschke, M. (2010). Livelihoods and co-management in the Tam Giang lagoon, Vietnam. Ocean & Coastal Management, 53(7), 327–335. doi:10.1016/j.ocecoaman.2010.04.001.

    Article  Google Scholar 

  • Venkataratnam, L., Thammappa, S. S., Sankar, T. R., & Anis, S. (1997). Mapping and monitoring prawn farming areas through remote sensing techniques. Geocarto International, 12(2), 23–29. doi:10.1080/10106049709354582.

    Article  Google Scholar 

  • Virdis, S. G. P., & Berlingozzi, L. (2007). Studio multitemporale di uso e copertura del suolo della laguna di Tam Giang - Cau Hai (Vietnam Centrale) attraverso immagini multispettrali SPOT5, Aster e Landsat ETM+. Giornale di Geologia Applicata, 6, 42–43. doi:10.1474/GGA.2007-06.A-21. Supplemento A.

    Google Scholar 

  • Walter, V. (2004). Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 225–238.

    Article  Google Scholar 

  • Zhan, Q., Molenaar, M., Tempfli, K., & Shi, W. (2005). Quality assessment for geospatial objects derived from remotely sensed data. International Journal of Remote Sensing, 26(14), 2953–2974. doi:10.1080/01431160500057764.

    Article  Google Scholar 

  • Zhang, T., Li, Q., Yang, X., Zhou, C., & Su, F. (2010). Automatic mapping aquaculture in coastal zone from TM imagery with OBIA approach. In Geoinformatics, 2010 18th International Conference on Geoinformatics, 18–20 June 2010 (pp. 1–4).

Download references

Aknowledgments

The author would like to thanks Prof. Massimo Sarti, Chief Technical Advisor of the FAO IMOLA Project for providing free access to satellite imagery and reference aquaculture dataset. The author is very grateful to anonymous reviewers for the constructive comments and recommendations, which were very helpful in improving and strengthening this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Gonario Pasquale Virdis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Virdis, S.G.P. An object-based image analysis approach for aquaculture ponds precise mapping and monitoring: a case study of Tam Giang-Cau Hai Lagoon, Vietnam. Environ Monit Assess 186, 117–133 (2014). https://doi.org/10.1007/s10661-013-3360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3360-7

Keywords

  • OBIA
  • SPRING
  • ISOSEG
  • Accuracy assessment
  • High-resolution satellite imagery