Skip to main content
Log in

Impact of Zn and Cu on the development of phenanthrene catabolism in soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mixtures of polycyclic aromatic hydrocarbons (PAHs) and heavy metals are of major concern in contaminated soil. Biodegradation of PAHs in metal-contaminated soils is complicated because metals are toxic and cannot be degraded by biological processes. This investigation considered the effects of Zn and Cu (50, 100, 500 and 1,000 mg/kg) on 14C-phenanthrene biodegradation in soil over 60-day contact time. The presence of Zn at all concentrations and low concentrations of Cu (50 and 100 mg/kg) had no significant effect (p > 0.05) on the development of phenanthrene catabolism; however, at higher Cu concentrations, the development of phenanthrene catabolism and bacterial cell numbers were significantly reduced (p < 0.05). This suggests that Cu is more toxic than Zn to soil microbial PAH catabolic activity. Metal/PAH-contaminated soils represent one of the most difficult remedial challenges and insights into PAH biodegradation in the presence of metals is necessary in order to assess the potential for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baath, E. (1989). Effects of heavy metals in soil on microbial processes and populations. Water, Air, and Soil Pollution, 47, 335–379.

    Article  CAS  Google Scholar 

  • Baldrin, P., Wiesche, C., Gabriel, J., Nerud, F., & Zadrazil, F. (2000). Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus osreatus in soil. Applied and Environmental Microbiology, 66, 2471–2478.

    Article  Google Scholar 

  • Bamforth, S. M., & Singleton, L. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80, 723–736.

    Article  CAS  Google Scholar 

  • Boucard, T. K., McNeill, C., Bardgett, R. D., Paynter, C. D., & Semple, K. T. (2008). The impact of synthetic pyrethroid and organophosphate sheep dip formulations on microbial activity in soil. Environmental Pollution, 153, 207–214.

    Article  CAS  Google Scholar 

  • Cabrero, A., Fernandez, S., Mirada, F., & Garcia, J. (1998). Effects of copper and zinc on the activated sludge bacteria growth kinetics. Wat Res, 32, 1355–1362.

    Article  CAS  Google Scholar 

  • Cao, L., Shen, G., & Lu, Y. (2008). Combined effects of heavy metal and polycyclic aromatic hydrocarbons on soil microorganisms communities. Environmental Geology, 54, 1531–1536.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–368.

    Article  CAS  Google Scholar 

  • Chaperon, S., & Sauve, S. (2008). Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation. Ecotoxicology and Environmental Safety, 70, 1–9.

    Article  CAS  Google Scholar 

  • Couling, N. R., Towell, M. G., & Semple, K. T. (2010). Biodegradation of PAHs in soil: influence of chemical structure, concentration and multiple amendment. Environmental Pollution, 158, 3411–3420.

    Article  CAS  Google Scholar 

  • Doick, K. J., Lee, P. H., & Semple, K. T. (2003). Assessment of spiking procedures for the introduction of a phenanthrene-LNAPL mixture into field-wet soil. Environmental Pollution, 126, 399–406.

    Article  CAS  Google Scholar 

  • Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Irha, N., Slet, J., & Petersell, V. (2003). Effects of heavy metals and PAH on soil assessed via dehydrogenase assay. Environmental International, 28, 779–782.

    Article  CAS  Google Scholar 

  • Kim, B., Mcbride, M. B., & Hay, A. G. (2008). Urease activity in aged copper and zinc- spiked soils: relationship to CaCl2-extractable metals and Cu2+ activity. Environmental Toxicology and Chemistry, 27, 2469–2475.

    Article  CAS  Google Scholar 

  • Kunito, T., Saeki, K., Goto, S., Hayashi, H., Oyaizu, H., & Matsumoto, S. (1999). Influences of copper forms on the toxicity to microorganisms in soils. Ecotoxicology and Environmental Safety, 44, 174–184.

    Article  CAS  Google Scholar 

  • Lee, P. H., Doick, K. J., & Semple, K. T. (2003). The development of phenanthrene catabolism in soil amended with transformer oil. FEMS Microbiology Letters, 228, 217–223.

    Article  CAS  Google Scholar 

  • Macleod, C. J. A., Morriss, A. W. J., & Semple, K. T. (2001). The role of microorganisms in ecological risk assessment of hydrophobic organic contaminants (HOCs) in soils. Advances in Applied Microbiology, 48, 171–212.

    Article  CAS  Google Scholar 

  • Macleod, C. J. A., & Semple, K. T. (2002). The adaptation of two similar soils to pyrene catabolism. Environmental Pollution, 119, 357–364.

    Article  CAS  Google Scholar 

  • Macleod, C. J. A., & Semple, K. T. (2006). The influence of single and multiple applications of pyrene on the evolution of pyrene catabolism in soil. Environmental Pollution, 139, 455–460.

    Article  CAS  Google Scholar 

  • Malakul, P., Srinivasan, K. R., & Wang, H. Y. (1998). Metal toxicity reduction in naphthalene biodegradation by use of metal chelating adsorbents. Applied and Environmental Microbiology, 64, 4610–4613.

    CAS  Google Scholar 

  • Maliszewka-Kordybach, B., & Smreczak, B. (2003). Habitat function of agricultural soils as affected by heavy metals and polyclic aromatic hydrocarbons contamination. Environmental International, 28, 719–728.

    Article  Google Scholar 

  • Nakatsu, C. H., Carmosini, N., Baldwin, B., Beasley, P. K., & Konopka, A. (2005). Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Applied and Environmental Microbiology, 71, 7679–7689.

    Article  CAS  Google Scholar 

  • Peng, R. H., Xiong, A. S., Xue, Y., FU, X. Y., Gao, F., Zhao, W., Tian, Y. S., & Yao, Q. H. (2008). Microbial biodegeadation of polyaromatic hydrocarbons. FEMS Microbiology Reviews, 32, 927–955.

    Article  CAS  Google Scholar 

  • Pepper, I. L., Gentry, T. J., Newby, D. T., Roane, T. M., & Josephson, K. L. (2002). The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environmental Health Perspectives, 110, 943–946.

    Article  CAS  Google Scholar 

  • Perez Silva, R., Rodriguez, A., Montes De Oca, J., & Moreno, D. (2009). Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeroginosa AT 18 isolated from a site contaminated with petroleum. Bioresource Technology, 100, 1533–1538.

    Article  CAS  Google Scholar 

  • Reid, B. J., Macleod, C. J. A., Lee, P. H., Morriss, A. W. J., Stokes, J. D., & Semple, K. T. (2001). A simple 14C-respirometric method for assessing microbial catabolic potential and contaminant bioavailability. FEMS Microbiology Letters, 196, 141–146.

    Article  CAS  Google Scholar 

  • Rhodes, A. H., McAllister, L. E., Chen, R., & Semple, K. T. (2010). Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils. Chemosphere, 79, 463–469.

    Article  CAS  Google Scholar 

  • Riis, V., Babel, W., & Pucci, O. H. (2002). Influence of heavy metals on the microbial degradation of diesel fuel. Chemosphere, 49, 559–568.

    Article  CAS  Google Scholar 

  • Roane, T. M., & Pepper, I. L. (2000). Microbial responses to environmentally toxic cadmium. Microbial Ecology, 38, 358–364.

    Article  Google Scholar 

  • Sandrin, T. R., Chech, A. M., & Maier, R. M. (2000). A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Applied and Environmental Microbiology, 66, 4585–4588.

    Article  CAS  Google Scholar 

  • Semple, K. T., Morris, A. W. J., & Paton, G. I. (2003). Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European Journal of Soil Science, 54, 809–818.

    Article  CAS  Google Scholar 

  • Semple, K. T., Doick, K. J., Wick, L. Y., & Harms, H. (2007). Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environmental Pollution, 150, 166–176.

    Article  CAS  Google Scholar 

  • Shen, G., Cao, L., & Hong, J. (2005). Influence of phenanthrene on cadmium toxicity to soil enzymes and microbial growth. Environ Sci Pollut R, 12, 259–263.

    Article  CAS  Google Scholar 

  • Sikkema, J., de Bont, J. A. M., & Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. Biological Chemistry, 269, 8022–8028.

    CAS  Google Scholar 

  • Smolders, E., Buekers, J., Oliver, I., & Mclaughlin, M. J. (2004). Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environmental Toxicology and Chemistry, 23, 2633–2640.

    Article  CAS  Google Scholar 

  • Sokhn, J., De Leij, F. A. A. M., Hart, T. D., & Lynch, J. M. (2001). Effect of copper on the degradation of phenanthrene by soil microorganisms. Letters in Applied Microbiology, 33, 164–168.

    Article  CAS  Google Scholar 

  • Stokes, J. D., Paton, G. I., & Semple, K. T. (2005). Behaviour and assessment of bioavailabilty of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use Manage, 21, 475–486.

    Article  Google Scholar 

  • Thavamani, P., Megharaj, M., & Krishnamurti, G. S. R. (2011). Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils: implication to bioremediation. Environmental International, 37, 184–1890.

    Article  CAS  Google Scholar 

  • Trapido, M. (1999). Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles. Environmental Pollution, 105, 67–74.

    Article  CAS  Google Scholar 

  • U. S. Environmental Protection Agency (2008) Available: http//www.epa.gov/wastes/hazard/Wastemin/minimize/factshts/pahs.pdf. Accessed: 8 Dec 2011.

  • Yuan-Peng, W., Ji-ya, S., Qi, L., Xin-cai, C., & Ying-xu, C. (2007). Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. Journal of Environmental Sciences, 19, 848–853.

    Article  Google Scholar 

  • Wong, K. W., Toh, B. A., Ting, Y. P., & Obbard, J. P. (2005). Biodegradation of phenanthrene by the indigenous microbial biomass in a zinc- amended soil. Letters in Applied Microbiology, 40, 50–55.

    Article  CAS  Google Scholar 

  • Zukauskaite, A., Jakubauskaite, V., Belous, O., Ambrazaitiene, D., & Stasiskiene, Z. (2008). Impact of heavy metals on oil products biodegradation process. Waste Manage Res, 26, 500–507.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Petroleum Technology Development Fund (PTDF) Nigeria and Lancaster Environmental Centre (LEC), Lancaster University, U K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ifeyinwa S. Obuekwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obuekwe, I.S., Semple, K.T. Impact of Zn and Cu on the development of phenanthrene catabolism in soil. Environ Monit Assess 185, 10039–10047 (2013). https://doi.org/10.1007/s10661-013-3311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3311-3

Keywords

Navigation