Skip to main content
Log in

The use of multiple tracers for tracking wastewater discharges in freshwater systems

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The assessment of potential impacts of wastewater effluent discharges in freshwater systems requires an understanding of the likely degrees of dilution and potential zones of influence. In this study, four tracers commonly present in wastewater effluents were monitored to compare their relative effectiveness in determining areas in freshwater systems that are likely to be impacted by effluent discharges. The four tracers selected were the human pharmaceutical carbamazepine, anthropogenic gadolinium, fluorescent-dissolved organic matter (fDOM), and electrical conductivity (EC). The four tracers were monitored longitudinally in two distinct freshwater systems receiving wastewater effluents, where one site had a high level of effluent dilution (effluent <1 % of total flow) and the other site had a low level of effluent dilution (effluent ∼50 % of total flow). At both sites, the selected tracers exhibited a similar pattern of response intensity downstream of discharge points relative to undiluted wastewater effluent, although a number of anomalies were noted between the tracers. Both EC and fDOM are non-specific to human influences, and both had a high background response, relative to the highly sensitive carbamazepine and anthropogenic gadolinium responses, although the ease of measuring EC and fDOM would make them more adaptable in highly variable systems. However, the greater sensitivity and selectivity of carbamazepine and gadolinium would make their combination with EC and fDOM as tracers of wastewater effluent discharges highly desirable to overcome potential limitations of individual tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahlmann, A., Weller, M. G., Panne, U., & Schneider, R. J. (2009). Monitoring carbamazepine in surface and wastewaters by an immunoassay based on a monoclonal antibody. Analytical and Bioanalytical Chemistry, 395, 1809–1820.

    Article  CAS  Google Scholar 

  • Baker, A. (2001). Fluorescence excitation–emission matrix characterization of some sewage-impacted rivers. Environmental Science and Technology, 35, 948–953.

    Article  CAS  Google Scholar 

  • Baker, A., Inverarity, R., Charlton, M., & Richmond, S. (2003). Detecting river pollution using fluorescence spectrophotometry: Case studies from the Ouseburn, NE England. Environmental Pollution, 124, 57–70.

    Article  CAS  Google Scholar 

  • Barber, L. B., Antweiler, R. C., Flynn, J. L., Keefe, S. H., Kolpin, D. W., Roth, D. A., et al. (2011). Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams. Environmental Science and Technology, 45, 2575–2583.

    Article  CAS  Google Scholar 

  • Barron, L., Tobin, J., & Paull, B. (2008). Multi-residue determination of pharmaceuticals in sludge and sludge enriched soils using pressurized liquid extraction, solid phase extraction and liquid chromatography with tandem mass spectrometry. Journal of Environmental Monitoring, 10, 353–361.

    Article  CAS  Google Scholar 

  • Bartelt-Hunt, S. L., Snow, D. D., Damon, T., Shockley, J., & Hoagland, K. (2009). The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environmental Pollution, 157, 786–791.

    Article  CAS  Google Scholar 

  • Buerge, I. J., Poiger, T., Muller, M. D., & Buser, H. R. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science and Technology, 37, 691–700.

    Article  CAS  Google Scholar 

  • Buerge, I. J., Buser, H. R., Kahle, M., Muller, M. D., & Poiger, T. (2009). Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: An ideal chemical marker of domestic wastewater in groundwater. Environmental Science and Technology, 43, 4381–4385.

    Article  CAS  Google Scholar 

  • Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38, 947–954.

    Article  CAS  Google Scholar 

  • Daughton, C. G., & Ruhoy, I. S. (2009). Environmental footprint of pharmaceuticals: The significance of factors beyond direct excretion to sewers. Environmental Toxicology and Chemistry, 28, 2495–2521.

    Article  CAS  Google Scholar 

  • Farre, M., Perez, S., Gajda-Schrantz, K., Osorio, V., Kantiani, L., Ginebreda, A., et al. (2010). First determination of C-60 and C-70 fullerenes and N-methylfulleropyrrolidine C-60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. Journal of Hydrology, 383, 44–51.

    Article  CAS  Google Scholar 

  • Gasser, G., Rona, M., Voloshenko, A., Shelkov, R., Tal, N., Pankratov, I., et al. (2010). Quantitative evaluation of tracers for quantification of wastewater contamination of potable water sources. Environmental Science and Technology, 44, 3919–3925.

    Article  CAS  Google Scholar 

  • Gasser, G., Rona, M., Voloshenko, A., Shelkov, R., Lev, O., Elhanany, S., et al. (2011). Evaluation of micropollutant tracers. II. Carbamazepine tracer for wastewater contamination from a nearby water recharge system and from non-specific sources. Desalination, 27, 398–404.

    Article  Google Scholar 

  • Hambly, A. C., Henderson, R. K., Baker, A., Stuetz, R. M., & Khan, S. J. (2010). Fluorescence monitoring for cross-connection detection in water reuse systems: Australian case studies. Water Science and Technology, 61, 155–162.

    Article  CAS  Google Scholar 

  • Henderson, R. K., Baker, A., Murphy, K. R., Hambly, A., Stuetz, R. M., & Khan, S. J. (2009). Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Research, 43, 863–881.

    Article  CAS  Google Scholar 

  • Hudson, N., Baker, A., Ward, D., Reynolds, D. M., Brunsdon, C., Carliell-Marquet, C., et al. (2008). Can fluorescence spectrometry be used as a surrogate for the biochemical oxygen demand (BOD) test in water quality assessment? An example from South West England. Science of the Total Environment, 391, 149–158.

    Article  CAS  Google Scholar 

  • Jobling, S., Nolan, M., Tyler, C. R., Brighty, G., & Sumpter, J. P. (1998). Widespread sexual disruption in wild fish. Environmental Science and Technology, 32, 2498–2506.

    Article  CAS  Google Scholar 

  • Johnson, A. C. (2010). Natural variations in flow are critical in determining concentrations of point source contaminants in rivers: An estrogen example. Environmental Science and Technology, 44, 7865–7870.

    Article  CAS  Google Scholar 

  • Kamber, B. S., Greig, A., & Collerson, K. D. (2005). A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochimica et Cosmochimica Acta, 69, 1041–1058.

    Article  CAS  Google Scholar 

  • Krasner, S. W., Westerhoff, P., Chen, B. Y., Rittmann, B. E., & Amy, G. (2009). Occurrence of disinfection byproducts in United States wastewater treatment plant effluents. Environmental Science and Technology, 43, 8320–8325.

    Article  CAS  Google Scholar 

  • Kummerer, K., & Helmers, E. (2000). Hospital effluents as a source of gadolinium in the aquatic environment. Environmental Science and Technology, 34, 573–577.

    Article  Google Scholar 

  • Lawrence, M. G., & Bariel, D. G. (2010). Tracing treated wastewater in an inland catchment using anthropogenic gadolinium. Chemosphere, 80, 794–799.

    Article  CAS  Google Scholar 

  • Lawrence, M. G., Ort, C., & Keller, J. (2009). Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia. Water Research, 43, 3534–3540.

    Article  CAS  Google Scholar 

  • Loffler, D., Rombke, J., Meller, M., & Ternes, T. (2005). Environmental fate of pharmaceuticals in water/sediment systems. Environmental Science and Technology, 39, 5209–5218.

    Article  Google Scholar 

  • Maldonado, C., Dachs, J., & Bayona, J. M. (1999). Trialkylamines and coprostanol as tracers of urban pollution in waters from enclosed seas: The Mediterranean and Black Sea. Environmental Science and Technology, 33, 3290–3296.

    Article  CAS  Google Scholar 

  • Australian Statistics on Medicines (2008). Australian Government Department of Health and Ageing. Canberra, Australia.

  • Miao, X. S., Yang, J. J., & Metcalfe, C. D. (2005). Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environmental Science and Technology, 39, 7469–7475.

    Article  CAS  Google Scholar 

  • Nelson, E. D., Do, H., Lewis, R. S., & Carr, S. A. (2011). Diurnal variability of pharmaceutical, personal care product, estrogen and alkylphenol concentrations in effluent from a tertiary wastewater treatment facility. Environmental Science and Technology, 45, 1228–1234.

    Article  CAS  Google Scholar 

  • Oppenheimer, J., Eaton, A., Badruzzaman, M., Haghani, A. W., & Jacangelo, J. G. (2011). Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions. Water Research, 45, 4019–4027.

    Article  CAS  Google Scholar 

  • Ort, C., & Siegrist, H. (2009). Assessing wastewater dilution in small rivers with high resolution conductivity probes. Water Science and Technology, 59, 1593–1601.

    Article  CAS  Google Scholar 

  • Ort, C., Hollender, J., Schaerer, M., & Siegrist, H. (2009). Model-based evaluation of reduction strategies for micropollutants from wastewater treatment plants in complex river networks. Environmental Science and Technology, 43, 3214–3220.

    Article  CAS  Google Scholar 

  • Petrovic, M., Farré, M., de Alda, M. L., Perez, S., Postigo, C., Köck, M., et al. (2010). Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples. Journal of Chromatography. A, 1217, 4004–4017.

    Article  CAS  Google Scholar 

  • Price, O. R., Williams, R. J., van Egmond, R., Wilkinson, M. J., & Whelan, M. J. (2010). Predicting accurate and ecologically relevant regional scale concentrations of triclosan in rivers for use in higher-tier aquatic risk assessments. Environment International, 36, 521–526.

    Article  CAS  Google Scholar 

  • Richardson, S. D. (2007). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 79, 4295–4323.

    Article  CAS  Google Scholar 

  • Rodgers-Gray, T. P., Jobling, S., Morris, S., Kelly, C., Kirby, S., Janbakhsh, A., et al. (2000). Long-term temporal changes in the estrogenic composition of treated sewage effluent and its biological effects on fish. Environmental Science and Technology, 34, 1521–1528.

    Article  CAS  Google Scholar 

  • Saadi, I., Borisover, M., Armon, R., & Laor, Y. (2006). Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere, 63, 530–539.

    Article  CAS  Google Scholar 

  • Scheurer, M., Storck, F. R., Graf, C., Brauch, H. J., Ruck, W., Lev, O., et al. (2011). Correlation of six anthropogenic markers in wastewater, surface water, bank filtrate, and soil aquifer treatment. Journal of Environmental Monitoring, 13, 966–973.

    Article  CAS  Google Scholar 

  • Schultz, M. M., Furlong, E. T., Kolpin, D. W., Werner, S. L., Schoenfuss, H. L., & Barber, L. B. (2010). Antidepressant pharmaceuticals in two US effluent-impacted streams: Occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environmental Science and Technology, 44, 1918–1925.

    Article  CAS  Google Scholar 

  • Singh, S. P., & Gardinali, P. R. (2006). Trace determination of 1-aminopropanone, a potential marker for wastewater contamination by liquid chromatography and atmospheric pressure chemical ionization-mass spectrometry. Water Research, 40, 588–594.

    Article  CAS  Google Scholar 

  • Snyder, S. A., & Benotti, M. J. (2010). Endocrine disruptors and pharmaceuticals: Implications for water sustainability. Water Science and Technology, 61, 145–154.

    Article  CAS  Google Scholar 

  • Tomson, T. (1987). Clinical pharmacokinetics of carbamazepine. Cephalalgia, 7, 219–223.

    Article  CAS  Google Scholar 

  • Vajda, A. M., Barber, L. B., Gray, J. L., Lopez, E. M., Woodling, J. D., & Norris, D. O. (2008). Reproductive disruption in fish downstream from an estrogenic wastewater effluent. Environmental Science and Technology, 42, 3407–3414.

    Article  CAS  Google Scholar 

  • Vazquez-Roig, P., Segarra, R., Blasco, C., Andreu, V., & Picó, Y. (2010). Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. Journal of Chromatography. A, 1217, 2471–2483.

    Article  CAS  Google Scholar 

  • Vengosh, A., Heumann, K. G., Juraske, S., & Kasher, R. (1994). Boron isotope application for tracing sources of contamination in groundwater. Environmental Science and Technology, 28, 1968–1974.

    Article  CAS  Google Scholar 

  • Verplanck, P. L., Taylor, H. E., Nordstrom, D. K., & Barber, L. B. (2005). Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Environmental Science and Technology, 39, 6923–6929.

    Article  CAS  Google Scholar 

  • Vieno, N., Tuhkanen, T., & Kronberg, L. (2007). Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Research, 41, 1001–1012.

    Article  CAS  Google Scholar 

  • Xue, S., Wang, K., Zhao, Q. L., & Wei, L. L. (2009). Chlorine reactivity and transformation of effluent dissolved organic fractions during chlorination. Desalination, 249, 63–71.

    Article  CAS  Google Scholar 

  • Young, T. A., Heidler, J., Matos-Perez, C. R., Sapkota, A., Toler, T., Gibson, K. E., et al. (2008). Ab initio and in situ comparison of caffeine, triclosan, and triclocarban as indicators of sewage-derived microbes in surface waters. Environmental Science and Technology, 42, 3335–3340.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Geißen, S.-U. (2010). Prediction of carbamazepine in sewage treatment plant effluents and its implications for control strategies of pharmaceutical aquatic contamination. Chemosphere, 80, 1345–1352.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the technical assistance provided by Hai Doan, Debra Gonzago, and Adrienne Gregg (CSIRO). The authors would like to thank the WWTP operators for allowing access to their sites and assisting in sample collection. This project was funded by the National Water Commission (Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M., Kumar, A., Ort, C. et al. The use of multiple tracers for tracking wastewater discharges in freshwater systems. Environ Monit Assess 185, 9321–9332 (2013). https://doi.org/10.1007/s10661-013-3254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3254-8

Keywords

Navigation