Skip to main content
Log in

Statistical distributions of trace metal concentrations in the northwestern Mediterranean atmospheric aerosol

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The concentrations of 11 crustal and anthropogenic trace metals (Li, Al, V, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) were measured from 2006 to 2008 in the atmospheric aerosol at a northwestern Mediterranean coast (station of Cap Ferrat, situated on the southeastern coast of France). Statistical models (lognormal, Weibull, and gamma) that best represented the trace metal distribution for this environment are described. The lognormal model was selected for the distributions of (in decreasing strength of the fit) Al, Co, Li, Zn, Mn, Cu, Pb, and Cd, i.e., metals that are introduced into the atmospheric aerosol by pulses inducing temporal variability in their concentrations. The gamma model was associated with Fe, i.e., metals that exhibit less inter-annual variability than the former trace metals. The third mode (Weibull) represented the distribution of the concentrations of V and Ni. The statistical approach presented in this study contributed to better define and constrain the distribution of the 11 trace metals of the atmospheric aerosol from the northwestern Mediterranean coast. In a close future, knowledge of these statistical distributions will allow using convolution models to separate their natural and anthropogenic contributions, therefore increasing our ability to study anthropogenic emissions of trace metals and their impact on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike, H. (1974). New look at statistical-model identification. IEEE T Automation Contraception, 19(6), 716–723.

    Article  Google Scholar 

  • Aleksandrapoulou, V., Eleftheriadis, K., Diapouli, E., Torseth, K., & Lazaridis, M. (2012). Assessing PM10 source reduction in urban agglomerations for air quality compliance. Journal of Environmental Monitoring, 14, 266–278.

    Article  Google Scholar 

  • Andral, B., Stanisiere, J. Y., Sauzade, D., Damier, E., Thebault, H., Galgani, F., et al. (2004). Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Marine Pollution Bulletin, 49, 704–712.

    Article  CAS  Google Scholar 

  • Anwari, M. A., Tuncel, G., & Ataman, O. Y. (1992). Lead and nickel levels in Black Sea aerosols by ETA-AS. Internal Journal Environmental Analytical Chemistry, 47, 227–237.

    Article  CAS  Google Scholar 

  • Barnaba, F., & Gobbi, G. P. (2004). Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001. Atmospheric Chemistry Physics, 4, 2367–2391.

    Article  CAS  Google Scholar 

  • Bencala, K. E., & Seinfeld, J. H. (1976). On frequency distributions of air pollutant concentrations. Atmospheric Environment, 10(11), 941–950.

    Article  CAS  Google Scholar 

  • Blackwood, L. G. (1991). The quality of mean and variance estimates for normal and lognormal data when the underlying distribution is misspecified. Journal of Chemometrics, 5(3), 263–271.

    Article  CAS  Google Scholar 

  • Blackwood, L. G. (1992). The lognormal distribution, environmental data, and radiological monitoring. Environmental Monitoring and Assessment, 21(3), 193–210.

    Article  Google Scholar 

  • Bollhöfer, A., & Rosman, K. J. R. (2001). Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochimica et Cosmochimica Acta, 65(11), 1727–1740.

    Article  Google Scholar 

  • Bonnet S, Guieu C (2006) Atmospheric forcing on the annual iron cycle in the western Mediterranean Sea: a 1-year survey. J Geophys Res—Oceans 111(C9):Artn C09010. doi:10.1029/2005jc003213

  • Caggiano, R., Fiore, S., Lettino, A., Macchiato, M., Sabia, S., & Trippetta, S. (2011). PM2.5 measurements in a Mediterranean site: two typical cases. Atmospheric Research, 102, 157–166.

    Article  CAS  Google Scholar 

  • Chester, R., Nimmo, M., & Corcoran, P. A. (1997). Rain water aerosol trace metal relationships at Cap Ferrat: a coastal site in the western Mediterranean. Marine Chemistry, 58(3–4), 293–312.

    Article  CAS  Google Scholar 

  • Chester, R., Sharples, E. J., Sanders, G. S., & Saydam, A. C. (1984). Saharan dust incursion over the Tyrrhenian Sea. Atmospheric Environment, 18(5), 929–935.

    Article  Google Scholar 

  • Chiffoleau, J. F., Chauvaud, L., Amouroux, D., Barats, A., Dufour, A., Pecheyran, C., et al. (2004). Nickel and vanadium contamination of benthic invertebrates following the “Erika” wreck. Aquatic Living Resources, 17(3), 273–280.

    Article  CAS  Google Scholar 

  • Chrysikou, L. P., & Samara, C. A. (2009). Seasonal variation of the size distribution of urban particulate matter and associated organic pollutants in the ambient air. Atmospheric Environment, 43(30), 4557–4569. doi:10.1016/j.atmosenv.2009.06.033.

    Article  CAS  Google Scholar 

  • Centre Interprofessionnel Technique d'Etudes de la Pollution Atmosphérique (CITEPA) (2009) Air emissions in France, Mainland France, Substances relative to the contamination by heavy metals. www.citepa.org/missions/nationale/ML/Emissions_FRmt_MLEN.pdf

  • Duncan BN, Bey I (2004) A modeling study of the export pathways of pollution from Europe: seasonal and interannual variations (1987–1997). J Geophys Res—Atmos 109(D8):D08301. doi:10.1029/2003jd004079

  • Fang, G. C., Huang, Y. L., & Huang, J. H. (2010). Study of atmospheric metallic elements pollution in Asia during 2000–2007. Journal of Hazardous Materials, 180(1–3), 115–121. doi:10.1016/j.jhazmat.2010.03.120.

    Article  CAS  Google Scholar 

  • Flament, P., Bertho, M. L., Deboudt, K., & Puskaric, E. (1996). Changes in the lead content of atmospheric aerosols above the Eastern Channel between 1982/83 and 1994. Science of the Total Environment, 192(2), 193–206.

    Article  CAS  Google Scholar 

  • Georgiadis, T., Fortezza, F., Alberti, L., Strocchi, V., Marani, A., & Dal Bo’, G. (1998). Probability density functions of photochemicals over a coastal area of Northern Italy. Nuovo Cimento C, 21(1), 75–84.

    Google Scholar 

  • Georgopoulos, P. G., & Seinfeld, J. H. (1982). Statistical distributions of air pollutant concentrations. Environmental Science & Technology, 16(7), A401–A416. doi:10.1021/es00101a002.

    Article  Google Scholar 

  • Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loye-Pilot, M. D., Measures, C., et al. (1999). The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progress Oceanografia, 44(1–3), 147–190.

    Article  Google Scholar 

  • Guieu, C., Chester, R., Nimmo, M., Martin, J. M., Guerzoni, S., Nicolas, E., et al. (1997). Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean. Deep-Sea Research II, 44(3–4), 655–674.

    Article  CAS  Google Scholar 

  • Heimbürger, L. E., Migon, C., Dufour, A., Chiffoleau, J. F., & Cossa, D. (2010). TM concentrations in the north-western Mediterranean atmospheric aerosol between 1986 and 2008: seasonal patterns and decadal trends. Science of the Total Environment, 408(13), 2629–2638. doi:10.1016/j.scitotenv.2010.02.042.

    Article  Google Scholar 

  • Hope, B. K. (1994). A global biogeochemical budget for vanadium. Science of the Total Environment, 141, 1–10. doi:10.1016/0048-9697(94)90012-4.

    Article  CAS  Google Scholar 

  • Kim, K. H., Kang, C. H., Lee, J. H., Choi, K. C., Youn, Y. H., & Hong, S. M. (2006). Investigation of airborne lead concentrations in relation to Asian dust events and air mass transport pathways. Journal Aerosol Science, 37(12), 1809–1825. doi:10.1016/j.jaerosci.2006.08.009.

    Article  CAS  Google Scholar 

  • Lévy, M., Memery, L., & Andre, J. M. (1998). Simulation of primary production and export fluxes in the northwestern Mediterranean Sea. Journal of Marine Research, 56(1), 197–238.

    Article  Google Scholar 

  • Lu, H. C. (2003). Comparisons of statistical characteristic of air pollutants in Taiwan by frequency distribution. Journal of the Air & Waste Management Association (1995), 53(5), 608–616.

    Article  CAS  Google Scholar 

  • Marticorena, B., & Bergametti, G. (1996). Two-year simulations of seasonal and interannual changes of the Saharan dust emissions. Geophysical Research Letters, 23(15), 1921–1924.

    Article  Google Scholar 

  • Migon, C., Alleman, L., Leblond, N., & Nicolas, E. (1993). Evolution of atmospheric lead over the northwestern Mediterranean between 1986 and 1992. Atmospheric Environment, 27(14), 2161–2167.

    Google Scholar 

  • Migon, C., & Caccia, J. L. (1990). Separation of anthropogenic and natural emissions of particulate heavy-metals in the western Mediterranean atmosphere. Atmospheric Environment, 24A(2), 399–405.

    CAS  Google Scholar 

  • Migon, C., Gentili, B., & Journel, B. (2000). Statistical analysis of the concentrations of twelve metals in the Ligurian atmospheric aerosol. Oceanologica Acta, 23(1), 37–45.

    Article  CAS  Google Scholar 

  • Migon, C., Robin, T., Dufour, A., & Gentili, B. (2008). Decrease of lead concentrations in the western Mediterranean atmosphere during the last 20 years. Atmospheric Environment, 42(4), 815–821. doi:10.1016/j.atmosenv.2007.10.078.

    Article  CAS  Google Scholar 

  • Mijic, Z., Stojic, A., Perišic, M., Rajšic, S., & Tasic, M. (2012). Statistical character and transport pathways of atmospheric aerosols in Belgrade. In: G. Lopez Badilla, B. Valdez, & M. Schorr (Eds.), Air quality–new perspectives. InTech Open Science, 11 (pp. 199–226). doi:10.5772/45873.

  • Morel, B., Yeh, S., & Cifuentes, L. (1999). Statistical distributions for air pollution applied to the study of the particulate problem in Santiago. Atmospheric Environment, 33(16), 2575–2585.

    Article  CAS  Google Scholar 

  • Moulin, C., Lambert, C. E., Dulac, F., & Dayan, U. (1997). Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature, 387, 691–694.

    Article  CAS  Google Scholar 

  • Ott, W. R. (1990). A physical explanation of the lognormality of pollutant concentrations. J Air Waste Management, 40(10), 1378–1383.

    Article  CAS  Google Scholar 

  • Pacyna, J. M., Pacyna, E. G., & Aas, W. (2009). Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmospheric Environment, 43(1), 117–127. doi:10.1016/j.atmosenv.2008.09.066.

    Article  CAS  Google Scholar 

  • Pirrone, N., Costa, P., & Pacyna, J. M. (1999). Past, current and projected atmospheric emissions of trace elements in the Mediterranean region. Water Science Technology, 39, 1–7.

    CAS  Google Scholar 

  • Ridame, C., Guieu, C., & Loÿe-Pilot, M. D. (1999). Trend in total atmospheric deposition fluxes of aluminium, iron, and trace metals in the northwestern Mediterranean over the past decade (1985–1997). Journal of Geophysical Research, 104(D23), 30127–30138.

    Article  CAS  Google Scholar 

  • Rumburg, B., Alldredge, R., & Claiborn, C. (2001). Statistical distributions of particulate matter and the error associated with sampling frequency. Atmospheric Environment, 35(16), 2907–2920.

    Article  CAS  Google Scholar 

  • Salma, I., Maenhaut, W., & Zaray, G. (2002). Comparative study of elemental mass size distributions in urban atmospheric aerosol. Journal Aerosol Science, 33(2), 339–356.

    Article  CAS  Google Scholar 

  • Sandroni, V., & Migon, C. (1997). Significance of trace metal medium-range transport in the western Mediterranean. Science of the Total Environment, 196(1), 83–89.

    Article  CAS  Google Scholar 

  • Schwarz, G. (1978). Estimating dimension of a model. The Annals of Statistics, 6(2), 461–464.

    Article  Google Scholar 

  • Taylor, J. A., Jakeman, A. J., & Simpson, R. W. (1986). Modeling distributions of air pollutant concentrations: I. Identification of statistical models. Atmospheric Environment, 20(9), 1781–1789.

    Article  CAS  Google Scholar 

  • Venkataraman, C., Thomas, S., & Kulkarni, P. (1999). Size distributions of polycyclic aromatic hydrocarbons—gas/particle partitioning to urban aerosols. Journal of Aerosol Science, 30(6), 759–770.

    Article  CAS  Google Scholar 

  • Wiesner, M. R., Characklis, G. W., & Brejchova, D. (1998) Metals and colloids in urban runoff. In: H. E Allen, A.W. Garrison, & G.W. Luther III (Eds.), Metals in the environment (pp. 23–35). Ann Arbor, MI: Ann Arbor Press.

  • Xie, R. K., Seip, H. M., Leinum, J. R., Winje, T., & Xiao, J. S. (2005). Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China. Science of the Total Environment, 343, 261–272.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Conseil Général des Alpes-Maritimes and the Communauté Nice Côte d’Azur (project AIRMED 06). T. Robin contribution was partly supported by the Swiss National Fund. We thank the French Marine team of the Cap Ferrat naval signal station. We also thank Patrick Chang for language corrections. L. Guidi contribution was partly supported by the Center for Microbial Oceanography, Research and Education (C-MORE; NSF grant EF-0424599) and the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Robin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robin, T., Guidi, L., Dufour, A. et al. Statistical distributions of trace metal concentrations in the northwestern Mediterranean atmospheric aerosol. Environ Monit Assess 185, 9177–9189 (2013). https://doi.org/10.1007/s10661-013-3245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3245-9

Keywords

Navigation