Skip to main content
Log in

Soil phosphorus forms and their variations in selected paddy soils of Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Fractionation of soil phosphorus (P) can provide useful information for assessing the risk of soil P as the potential sources of eutrophication in aquatic systems. Little information exists on P forms in paddy soils of Isfahan Province in central Iran, where P fertilizers have been continuously applied for at least 45 years. The objectives of this study were to investigate concentrations and proportions of P forms in paddy soils and correlate the content of P forms with basic soil properties. Soil samples from three paddy sites were obtained, and soil P forms were determined by a modified Hedley fraction method. Results show that the total P concentrations ranged from 288 to 850 mg kg−1 and were enriched in site 1. In all sites, the rank order of P fractions was HCl-P (CARB-P) > residual-P (RES-P) > NaOH-P (Fe-Al-P) > KCl-P (EXCH-P), indicating that Ca compounds are the main soil components contributing to P retention in these calcareous paddy soils. The EXCH-P represented on average < 1 % of the total P, while the Fe-Al-P ranged 3.3–18 %. The CARB-P showed considerable contribution (63.6–85.6 %) to the total P. The Pearson correlation matrix indicated that Fe-Al-P only was positively correlated with total P, but did not show any significant correlations with other soil geochemical properties. Calcium-bound P fraction was significantly correlated with the clay, silt, cation exchange capacity, and total P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez-Rogel, J., Jimenez-Carceles, F. J., & Egea-Nicolas, C. (2007). Phosphorus retention in a coastal salt marsh in SE Spain. Sci. Total Environ., 378, 71–74.

    Article  CAS  Google Scholar 

  • Ann, Y., Reddy, K. R., & Delfino, J. J. (2000a). Influence of chemical amendments on phosphorus immobilization in soils from a constructed wetland. Ecol. Eng., 14, 157–167.

    Article  Google Scholar 

  • Ann, Y., Reddy, K. R., & Delfino, J. J. (2000b). Influence of redox potential on phosphorus solubility in chemically amended wetland organic soils. Ecol. Eng., 14, 169–180.

    Article  Google Scholar 

  • Annaheim, K. E., Tamburini, F., Mäder, P., Mayer, J., Frossard, E., & Bünemann, E. K. (2012). Phosphorus forms and enzymatic hydrolyzability of organic phosphorus in soils after 30 years of organic and conventional farming. J. Plant Nutr. Soil Sci., 175, 385–393.

    Article  Google Scholar 

  • Cassagne, N., Remaury, M., Gauquelin, T., & Fabre, A. (2000). Forms and profile distribution of soil phosphorus in alpine inceptisols and spodosols (Pyrenees, France). Geoderma, 1–2, 161–172.

    Article  Google Scholar 

  • Castillo, M. S., & Wright, A. L. (2008). Microbial activity and phosphorus availability in a subtropical soil under different land uses. World J Agric Sci, 4, 314–320.

    Google Scholar 

  • Diaz, O. A., Daroub, S. H., Stuck, J. D., Clark, M. W., Lang, T. A., & Reddy, K. R. (2006). Sediment inventory and phosphorus fractions for Water Conservation Area canals in the Everglades. Soil Sci. Soc. Am. J., 70, 863–871.

    Article  CAS  Google Scholar 

  • Dobermann, A., Cassman, K. G., Mamaril, C. P., & Sheehy, J. E. (1998). Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice. Field Crops Res., 56, 113–138.

    Article  Google Scholar 

  • Guo, F. (2000). Changes in P fractions in soils under intensive plant growth. Soil Sci. Soc. Am. J., 64, 1681–1689.

    Article  CAS  Google Scholar 

  • Heckrath, G., Brookes, P. C., Poulton, P. R., & Goulding, K. W. T. (1995). Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk Experiment. J. Environ. Qual., 24, 904–910.

    Article  CAS  Google Scholar 

  • Hogan, D. M., Jordan, T. E., & Walbridge, M. R. (2004). Phosphorus retention and soil organic carbon in restored and natural freshwater wetlands. Wetlands, 24, 573–585.

    Article  Google Scholar 

  • Huguenin-Elie, O. (2003). Phosphorus uptake by rice from soil that is flooded, drained or flooded then drained. Eur. J. Soil Sci., 54, 77–90.

    Article  CAS  Google Scholar 

  • Ivanoff, D. B., Reddy, K. R., & Robinson, S. (1998). Chemical fractionation of organic phosphorus in selected histosols. Soil Sci, 163, 36–45.

    Article  CAS  Google Scholar 

  • Jalali, M. (2007). Phosphorous status and sorption characteristics of some calcareous soils of Hamadan, western Iran. Environ. Geol., 53, 365–374.

    Article  CAS  Google Scholar 

  • Jalali, M., & Ranjbar, F. (2010). Aging effects on phosphorus transformation rate and fractionation in some calcareous soils. Geoderma, 155, 101–106.

    Article  CAS  Google Scholar 

  • Jalali, M. (2010). Phosphorus fractionation in river sediments, Hamadan, western Iran. Soil Sediment Contam., 19, 560–572.

    Article  CAS  Google Scholar 

  • Jalali, M., & Ahmadi Mohammad Zinli, N. (2011). Kinetics of phosphorus release from calcareous soils under different land use in Iran. J. Plant Nutr. Soil Sci., 174, 38–46.

    Article  CAS  Google Scholar 

  • Jalali, M., & Sajadi Tabar, S. (2011). Chemical fractionation of phosphorus in calcareous soils of Hamadan, western Iran under different land use. J. Plant Nutr. Soil Sci., 174, 523–531.

    Article  CAS  Google Scholar 

  • Jalali, M., & Hemati, N. (2013) Chemical fractionation of seven heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) in selected paddy soils of Iran. Paddy Water Environ, 11, 299–309.

    Google Scholar 

  • Jiménez-Cárceles, F. J., & Álvarez-Rogel, J. (2008). Phosphorus fractionation and distribution in salt marsh soils affected by mine wastes and eutrophicated water: a case study in SE Spain. Geoderma, 144, 299–309.

    Article  Google Scholar 

  • McGrath, D. A., Duryea, M. L., & Cropper, W. P. (2001). Soil phosphorus availability and fine root proliferation in Amazonian agroforests 6 years following forest conversion. Agric Ecosyst Environ, 83, 271–284.

    Article  CAS  Google Scholar 

  • Moore, P. A., & Reddy, K. R. (1994). Role of eH and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. J Environ Qual, 23, 955–964.

    Article  CAS  Google Scholar 

  • Monterroso, M. C., Fernandez Marcos, M. L., & Alvarez Rodriguez, E. (1996). Factors influencing phosphorus adsorption in mine soils in Galicia. Spain. Sci. Tot. Environ., 180, 137–145.

    Article  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Newman, S., & Pietro, K. (2001). Phosphorus storage and release in response to flooding: implications for Everglades storm water treatment areas. Ecol. Eng., 18, 23–38.

    Article  Google Scholar 

  • Noll, M. R., Szatkowski, A. E., & Magee, E. A. (2009). Phosphorus fractionation in soil and sediments along a continuum from agricultural fields to near shore lake sediments: potential ecological impacts. J. Great Lakes Res., 35, 56–63.

    Article  CAS  Google Scholar 

  • Olsen S.L., & Sommers L.E. (1982). Phosphorus. In: Page A.L. et al. (eds) Methods of soil analysis, Part 2. American Society of Agronomy, Madison, pp 403–427.

  • Paludan, C., & Morris, J. T. (1999). Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochem., 45, 197–221.

    Google Scholar 

  • Pheav, S., Bell, R. W., White, P. F., & Kirk, G. J. D. (2002). Phosphate sorption–desorption behaviour, and phosphorus release characteristics of three contrasting lowland rice soils of Cambodia. Cambodian J. Agric., 6, 39–54.

    Google Scholar 

  • Pheav, S., Bell, R. W., White, P. F., & Kirk, G. J. D. (2005). Phosphorus mass balances for successive crops of fertilised rainfed rice on a sandy lowland soil. Nutr. Cycling Agroecosyst., 73, 277–292.

    Article  Google Scholar 

  • Reddy, K. R., Wang, Y., DeBusk, W. F., Fisher, M. M., & Newman, S. (1998). Forms of soil phosphorus in selected hydrologic units of the Florida Everglades. Soil Sci. Soc. Am. J., 62, 1134–1147.

    Article  CAS  Google Scholar 

  • Rydin, E. (2000). Potentially mobile phosphorus in Lake Erken Sediment. Water Res., 34(7), 2037–2042.

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (2004). SAS Institute Inc. SAS software, Version 9.1 of the SAS System for Windows. SAS Institute Inc., Cary.

  • Saleque, M. A., & Kirk, G. J. D. (1995). Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol., 129, 325–336.

    Article  CAS  Google Scholar 

  • Saleque, M. A. (2004). Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crop Res., 86, 53–65.

    Article  Google Scholar 

  • Saleque, M. A., Abedin, M. J., Ahmed, Z. U., Hasan, M., & Panaullah, G. M. (2001). Influences of phosphorus deficiency on the uptake of nitrogen, potassium, calcium, magnesium, sulfur, and zinc in lowland rice varieties. J. Plant Nutr., 24, 1621–1632.

    Article  CAS  Google Scholar 

  • Saleque, M. A., Naher, U. A., Islam, A., Pathan, A. B. M. B., Hossain, A. T. M. S., & Meisner, C. A. (2004). Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils. Soil Sci. Soc. Am. J., 68, 1635–1644.

    Article  CAS  Google Scholar 

  • Samadi, A., & Gilkes, R. J. (1998). Forms of phosphorus in virgin and fertilized calcareous soils of western Australia. Aust. J Soil Res., 36, 585–602.

    Article  CAS  Google Scholar 

  • Shan, Y. H., Yang, L. Z., Yan, T. M., & Wang, J. G. (2005). Downward movement of phosphorus in paddy soil installed in large-scale monolith lysimeters. Agric. Ecosyst. Environ., 111, 270–278.

    Article  CAS  Google Scholar 

  • Tchienkoua, M., & Zech, W. (2003). Chemical and spectral characterization of soil phosphorus under three land uses from an Andic Palehumult in West Cameroon. Agric. Ecosyst. Environ., 100, 193–200.

    Article  CAS  Google Scholar 

  • Tiessen, H. (1995). Phosphorus in the global environment—transfers, cycles and management. NY: John Wiley and Sons.

    Google Scholar 

  • Turner, B. L., Cade-Menun, B. J., Condron, L. M., & Newman, S. (2005). Extraction of soil organic phosphorus. Talanta, 66, 294–306.

    Article  CAS  Google Scholar 

  • Villapando, R. R., & Graetz, D. A. (2001). Water table effects on phosphorus reactivity and mobility in a dairy manure-impacted spodosol. Ecol. Eng., 18, 77–89.

    Article  Google Scholar 

  • Williams, J. D. H., Mayer, T., & Nriagu, J. O. (1980). Extractability of P from phosphate minerals common in soils and sediments. Soil Sci. Soc. Am. J., 44, 462–465.

    Article  CAS  Google Scholar 

  • Wright, A. L. (2009). Soil phosphorus stocks and distribution in chemical fractions for long-term sugarcane, pasture, turfgrass, and forest systems in Florida Nutr. Cyc. Agric. Sys., 83, 223–231.

    CAS  Google Scholar 

  • Yadvinder-Singh, Dobermann, A., Bijay-Singh, Bronson, K. F., & Khind, C. S. (2000). Optimal phosphorus management strategies for wheat-rice cropping on a loamy sand. Soil Sci. Soc. Am. J., 64, 1413–1422.

    CAS  Google Scholar 

  • Yang, J. C., Wang, Z. G., Zhou, J., Jiang, H. M., Zhang, J. F., Pan, P., Han, Z., Lu, C., Li, L. L., & Ge, C. L. (2012). Inorganic phosphorus fractionation and its translocation dynamics in a low-P soil. J. Environ. Radioactivity, 112, 64–69.

    Article  CAS  Google Scholar 

  • Zhang, T. Q. (1996). Chemical behaviour of P in fertilized soils. Quebec, Canada: Ph.D. diss. McGill Univ.

    Google Scholar 

  • Zhang, T. Q., MacKenzie, A. F., Liang, B. C., & Drury, C. F. (2004). Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Sci. Soc. Am. J., 68, 519–528.

    Article  CAS  Google Scholar 

  • Zhang, H., Cao, F., Fang, S. H., Wang, G., Zhang, H., & Cao, Z. (2005). Effects of agricultural production on phosphorus losses from paddy soils: a case study in the Taihu Lake Region of China. Wetlands Eco. Manage., 13, 25–33.

    Article  CAS  Google Scholar 

  • Zhang, Q., Wang, G. H., Feng, Y. K., Sun, Q. Z., Witt, C., & Dobermann, A. (2006). Changes in soil phosphorus fractions in a calcareous paddy soil under intensive rice cropping. Plant Soil, 288, 141–154.

    Article  CAS  Google Scholar 

  • Zhou, Q., & Zhu, Y. (2003). Potential pollution and recommended critical levels of phosphorus in paddy soils of the southern lake Tai area, China. Geoderma, 115, 45–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jalali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalali, M., Matin, N.H. Soil phosphorus forms and their variations in selected paddy soils of Iran. Environ Monit Assess 185, 8557–8565 (2013). https://doi.org/10.1007/s10661-013-3195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3195-2

Keywords

Navigation