Skip to main content
Log in

Simultaneous analysis of endosulfan, chlorpyrifos, and their metabolites in natural soil and water samples using gas chromatography-tandem mass spectrometry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Analysis of endosulfan, chlorpyrifos, and their nonpolar metabolites in extracts from environmental aqueous and soil samples was performed using a gas chromatography-tandem mass spectrometry (GC–MS/MS) technique. Full-scan GC–MS analysis showed poor sensitivity for some of the metabolites (endodiol and endosulfan ether). A multisegment MS/MS method was developed and MS/MS parameter isolation time, excitation time, excitation voltage, and maximum excitation energy were optimized for chosen precursor ions to enhance selectivity and sensitivity of the analysis. The use of MS/MS with optimized parameters quantified analytes with significantly higher accuracy, and detection limits were lowered to ~1/6th compared with the full-scan method. Co-eluting compounds, chlorpyrifos and chlorpyrifos oxon, were also analyzed successfully in the MS/MS mode by choosing exclusive precursor ions. Analysis of soil and water phase samples from contaminated soil slurry bioreactors showed that the MS/MS method could provide more reliable estimates of these pesticide and metabolites (especially those present in low concentrations) by annulling interferences from soil organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alder, L., Greulich, K., Kempe, G., & Vieth, B. (2006). Residue analysis of 500 high priority pesticides: Better by GC–MS or LC–MS/MS? Mass Spectrometry Reviews, 25(6), 838–865.

    Article  CAS  Google Scholar 

  • Armbruster, D. A., & Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. Clinical Biochemistry Reviews, 29, 49–52.

    Google Scholar 

  • Arrebola, F. J., Martínez Vidal, J. L., & Fernández-Gutiérrez, A. (2001). Analysis of endosulfan and its metabolites in human serum using gas chromatography-tandem mass spectrometry. Journal of Chromatographic Science, 39(5), 177–182.

    Article  CAS  Google Scholar 

  • Béguin, S., Jadas-Hécart, A., Tabet, J. C., & Communal, P. Y. (2006). Protocols for optimizing MS/MS parameters with an ion-trap GC–MS instrument. Journal of Mass Spectrometry, 41, 1304–1314.

    Article  Google Scholar 

  • Bempah, C., & Donkor, A. (2011). Pesticide residues in fruits at the market level in Accra Metropolis, Ghana, a preliminary study. Environmental Monitoring and Assessment, 175(1–4), 551–561.

    Article  CAS  Google Scholar 

  • Berthouex, P. M., & Brown, L. C. (2002). Statistics for environmental engineers. New York: Lewis.

    Google Scholar 

  • Castro, J., Pérez, R. A., Miguel, E., Sánchez-Brunete, C., & Tadeo, J. L. (2002). Analysis of endosulfan isomers and endosulfan sulfate in air and tomato leaves by gas chromatography with electron-capture detection and confirmation by gas chromatography–mass spectrometry. Journal of Chromatography. A, 947, 119–127.

    Article  CAS  Google Scholar 

  • Cho, S. K., Abd El-Aty, A. M., Jeon, H. R., Choi, J. H., Shin, H. C., & Shim, J. H. (2008). Comparison of different extraction methods for the simultaneous determination of pesticide residues in kiwi fruit using gas chromatography–mass spectrometry. Biomedical Chromatography, 22, 727–735.

    Article  CAS  Google Scholar 

  • Corley, J. (2003). Best practices in establishing detection and quantification limits for pesticide residues in foods (vol. 1, Handbook of residue analytical methods for agrochemicals). Chichester: Wiley.

    Google Scholar 

  • Duirk, S. E., & Collette, T. W. (2006). Degradation of chlorpyrifos in aqueous chlorine solutions: Pathways, kinetics, and modeling. Environmental Science and Technology, 40(2), 546–551.

    Article  CAS  Google Scholar 

  • Fernández Moreno, J. L., Garrido Frenich, A., Plaza Bolaños, P., & Martínez Vidal, J. L. (2008). Multiresidue method for the analysis of more than 140 pesticide residues in fruits and vegetables by gas chromatography coupled to triple quadrupole mass spectrometry. Journal of Mass Spectrometry, 43, 1235–1254.

    Article  Google Scholar 

  • Fialkov, A. B., Steiner, U., Lehotay, S. J., & Amirav, A. (2007). Sensitivity and noise in GC–MS: Achieving low limits of detection for difficult analytes. International Journal of Mass Spectrometry, 260, 31–48.

    Article  CAS  Google Scholar 

  • Geerdink, R. B., Niessen, W. M. A., & Brinkman, U. A. T. (2002). Trace-level determination of pesticides in water by means of liquid and gas chromatography. Journal of Chromatography. A, 970, 65–93.

    Article  CAS  Google Scholar 

  • Khodadoust, A. P., Suidan, M. T., Acheson, C. M., & Brenner, R. C. (1999). Solvent extraction of pentachlorophenol from contaminated soils using water–ethanol mixtures. Chemosphere, 38(11), 2681–2693.

    Article  CAS  Google Scholar 

  • Leung, A. M., McDonough, D. M., & West, C. D. (1998). Determination of endosulfans in soil/sediment samples from Point Mugu, Oxnard, CA using capillary gas chromatography/mass selective detection (GC/MSD). Environmental Monitoring and Assessment, 50(1), 85–94.

    Article  CAS  Google Scholar 

  • Lian, Y.-J., Pang, G.-F., Shu, H.-R., Fan, C.-L., Liu, Y.-M., Feng, J., et al. (2010). Simultaneous determination of 346 multiresidue pesticides in grapes by PSA-MSPD and GC–MS–SIM. Journal of Agricultural and Food Chemistry, 58(17), 9428–9453.

    Article  CAS  Google Scholar 

  • Lin, C. H., Lerch, R. N., Garrett, H. E., & George, M. F. (2007). Improved GC–MS/MS method for determination of atrazine and its chlorinated metabolites in forage plants—Laboratory and field experiments. Communications in Soil Science and Plant Analysis, 38, 1753–1773.

    Article  CAS  Google Scholar 

  • Lu, J. (2010). Multipesticide residue assessment of agricultural soil and water in major farming areas in Benguet, Philippines. Archives of Environmental Contamination and Toxicology, 59(2), 175–181.

    Article  CAS  Google Scholar 

  • Mandalakis, M., Tsapakis, M., & Stephanou, E. G. (2001). Optimization and application of high-resolution gas chromatography with ion trap tandem mass spectrometry to the determination of polychlorinated biphenyls in atmospheric aerosols. Journal of Chromatography. A, 925, 183–196.

    Article  CAS  Google Scholar 

  • March, R. E. (1997). An introduction to quadrupole ion trap mass spectrometry. Journal of Mass Spectrometry, 32, 351–369.

    Article  CAS  Google Scholar 

  • Pinho, G. P., Neves, A. A., Queiroz, M. E. L. R., & Silvério, F. O. (2010). Pesticide determination in tomatoes by solid–liquid extraction with purification at low temperature and gas chromatography. Food Chemistry, 121, 251–256.

    Article  Google Scholar 

  • Pyle, S. M., Marcus, A. B., & Robertson, G. L. (1998). ECD–dual-column pesticide method verification by ion trap GC/MS and GC/MS/MS. Environmental Science and Technology, 32, 3213–3217.

    Article  CAS  Google Scholar 

  • Racke, K. D. (1993). Environmental fate of chlorpyrifos. Reviews of Environmental Contamination and Toxicology, 131, 1–150.

    Article  CAS  Google Scholar 

  • Raina, R. (2011). Chemical analysis of pesticides using GC/MS, GC/MS/MS, and LC/MS/MS. In M. Stoytcheva (Ed.), PesticidesStrategies for pesticides analysis: InTech, Rijeka.

  • Raina, R., & Hall, P. (2008). Comparison of gas chromatography–mass spectrometry and gas chromatography–tandem mass spectrometry with electron ionization and negative-ion chemical ionization for analyses of pesticides at trace levels in atmospheric samples. Analytical Chemistry Insights, 3, 111–125.

    CAS  Google Scholar 

  • Ramesh, A., & Ravi, P. E. (2002). A rapid and sensitive analytical method for the quantification of residues of endosulfan in blood. Journal of Environmental Monitoring, 4(2), 190–193.

    Article  CAS  Google Scholar 

  • Rashid, A., Nawaz, S., Barker, H., Ahmad, I., & Ashraf, M. (2010). Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography–tandem mass spectrometry. Journal of Chromatography. A, 1217, 2933–2939.

    Article  CAS  Google Scholar 

  • Sauret, N., Millet, M., Herckes, P., Mirabel, P., & Wortham, H. (2000). Analytical method using gas chromatography and ion trap tandem mass spectrometry for the determination of S-triazines and their metabolites in the atmosphere. Environmental Pollution, 110, 243–252.

    Article  CAS  Google Scholar 

  • Shunthirasingham, C., Oyiliagu, C. E., Cao, X., Gouin, T., Wania, F., Lee, S., et al. (2010). Spatial and temporal pattern of pesticides in the global atmosphere. Journal of Environmental Monitoring, 12(9), 1650–1657.

    Article  CAS  Google Scholar 

  • Singh, S. B., Mukherjee, I., Maisnam, J., Kumar, P., Gopal, M., & Kulshrestha, G. (2009). Determination of pesticide residues in integrated pest management and nonintegrated pest management samples of apple (Malus pumila Mill.). Journal of Agricultural and Food Chemistry, 57, 11277–11283.

    Article  CAS  Google Scholar 

  • Sinha, S. N. (2010). Effect of dissociation energy: Signal to noise ratio on ion formation and sensitivity of analytical method for quantification and confirmation of triazofos in blood samples using gas chromatography–mass spectrometer (GC–MS/MS). International Journal of Mass Spectrometry, 296(1–3), 47–52.

    Article  CAS  Google Scholar 

  • Sinha, S. N., Bhatnagar, V. K., Doctor, P., Tuteja, G. S., Agnihotri, N. P., & Kalra, R. L. (2011). A novel method for pesticide analysis in refined sugar samples using a gas chromatography–mass spectrometer (GC–MS/MS) and simple solvent extraction method. Food Chemistry, 126, 379–386.

    Article  CAS  Google Scholar 

  • Sutherland, T. D., Horne, I., Lacey, M. J., Harcourt, R. L., Russell, R. J., & Oakeshott, J. G. (2000). Enrichment of an endosulfan-degrading mixed bacterial culture. Applied and Environmental Microbiology, 66, 2822–2828.

    Article  CAS  Google Scholar 

  • Sutherland, T. D., Horne, I., Weir, K. M., Russell, R. J., & Oakeshott, J. G. (2004). Toxicity and residues of endosulfan isomers. Reviews of Environmental Contamination and Toxicology, 183, 99–113.

    Article  CAS  Google Scholar 

  • Tiwari, M. K., & Guha, S. (2012). Role of soil organic matter on the sorption and cosorption of endosulfan and chlorpyrifos on agricultural soils. Journal of Environmental Engineering ASCE, 138(4), 426–435.

    Article  CAS  Google Scholar 

  • Weber, J., Halsall, C. J., Muir, D., Teixeira, C., Small, J., Solomon, K., et al. (2010). Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Science of the Total Environment, 408, 2966–2984.

    Article  CAS  Google Scholar 

  • Wong, J. W., Zhang, K., Tech, K., Hayward, D. G., Krynitsky, A. J., Cassias, I., et al. (2010). Multiresidue pesticide analysis of ginseng powders using acetonitrile- or acetone-based extraction, solid-phase extraction cleanup, and gas chromatography–mass spectrometry/selective ion monitoring (GC–MS/SIM) or -tandem mass spectrometry (GC–MS/MS). Journal of Agricultural and Food Chemistry, 58(10), 5884–5896.

    Article  CAS  Google Scholar 

  • Yang, X., Wang, J., Xu, D. C., Qiu, J. W., Ma, Y., & Cui, J. (2011). Simultaneous determination of 69 pesticide residues in coffee by gas chromatography–mass spectrometry. Food Analytical Method, 4(2), 186–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, M.K., Guha, S. Simultaneous analysis of endosulfan, chlorpyrifos, and their metabolites in natural soil and water samples using gas chromatography-tandem mass spectrometry. Environ Monit Assess 185, 8451–8463 (2013). https://doi.org/10.1007/s10661-013-3186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3186-3

Keywords

Navigation