Skip to main content

Advertisement

Log in

Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Armstrong, B. G., Chalabi, Z., Fenn, B., Hajat, S., Kovats, S., Milojevic, A., et al. (2011). Association of mortality with high temperatures in a temperate climate: England and Wales. Journal of Epidemiology and Community Health, 65, 340–345.

    Article  CAS  Google Scholar 

  • Basu, R. (2009). High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008, Review. Environmental Health, 8, 40.

    Article  Google Scholar 

  • Ca, V. T., Ashie, Y., & Asaeda, T. (2002). A k-ε turbulence closure model for the atmospheric boundary layer including urban canopy. Boundary-Layer Meteorol, 102, 459–490.

    Article  Google Scholar 

  • Choi, J., Chung, U., & Yun, J. I. (2003). Urban-effect correction to improve accuracy of spatially interpolated temperature estimates in Korea. Journal of Applied Meteorology, 42, 1711–1719.

    Article  Google Scholar 

  • Council of the European Union (2009). Council Conclusions on a community framework on disaster prevention within the EU, 2979th JUSTICE and HOME AFFAIRS Council meeting. Brussels, 30 November 2009.

  • Daglis, I.A., S. Rapsomanikis, K. Kourtidis, D. Melas, A. Papayannis, I. Keramitsoglou, T. Giannaros, V. Amiridis, G. Petropoulos, A. Georgoulias, J.-A. Sobrino, P. Manunta, J. Gröbner, M. Paganini, and R. Bianchi, “Results of the DUE Thermopolis campaign with regard to the Urban Heat Island (UHI) effect in Athens,” in Proc. ESA Living Planet Symposium, ESA SP-686, European Space Agency (2010).

  • de Bruin, H. A. R., & Holtslag, A. A. M. (1982). A simple parameterization of surface fluxes of sensible and latent heat during daytime compared with the Penman–Monteith concept. Journal Applications Meteorological, 21, 1610–1621.

    Article  Google Scholar 

  • De Ridder, K. (2006). Testing Brutsaert’s temperature roughness parameterization for representing urban surfaces in atmospheric models. Geology-Physics Research Letters, 30, L13403. doi:10.1029/2006GL026572.

    Article  Google Scholar 

  • De Ridder, K., & Schayes, G. (1997). The IAGL land surface model. Journal of Applied Meteorology, 36, 167–182.

    Article  Google Scholar 

  • Dee, D. P., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.

    Article  Google Scholar 

  • D’Ippoliti, D., et al. (2010). The impact of heat waves on mortality in 9 European cities: Results from the EuroHEAT project. Environmental Health: A Global Access Science Source, 9, 37.

    Google Scholar 

  • Doucet, A., Freitas, N. D., & Gordon N. (2001). Sequential Monte Carlo methods in practice. Birkhauser, 2001.

  • Dousset, B., Gourmelon, F., Laaidi, K., Zeghnoun, A., Giraudet, E., Bretin, P., et al. (2011). Satellite monitoring of summer heat waves in the Paris metropolitan area. International Journal of Climatology, 31, 313–323. doi:10.1002/joc.2222.

    Article  Google Scholar 

  • Driankov, D., Hellendoorn, H., & Reinfrank, M. (1993). An introduction to fuzzy control. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Dupont, S., & Mestayer, P. (2006). Parameterization of the urban energy budget with the submesoscale soil model. Journal of Applied Meteorology and Climatology, 45, 1744–1765.

    Article  Google Scholar 

  • Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling and impacts (review). Science, 289, 2068–2074.

    Article  CAS  Google Scholar 

  • EC European Commission. (2010). Commission staff working paper: Risk assessment and mapping guidelines for disaster management. Brussels: SEC(2010) 1626 final.

    Google Scholar 

  • EEA European Environment Agency. (2010). Mapping the impacts of natural hazards and technological accidents in Europe: An overview of the last decade. Technical report No 13/2010 (pp. 1725–2237). Copenhagen: ISSN.

    Google Scholar 

  • Founda, D., & Giannakopoulos, C. (2009). The exceptionally hot summer of 2007 in Athens, Greece—A typical summer in the future climate? Global and Planetary Change, 67, 227–236.

    Article  Google Scholar 

  • Gallo, K., & Owen, T. (1999). Satellite-based adjustments for the Urban Heat Island temperature bias. Journal of Applied Meteorology, 38, 806–813.

    Article  Google Scholar 

  • Garratt J.R. (1992). The atmospheric boundary layer, Cambridge University Press, Cambridge (1992).

  • Grimmond, C. S. B., & Oke, T. R. (2002). Turbulent heat fluxes in urban areas: Observations and a local-scale Urban Meteorological Parameterization Scheme (LUMPS). Journal Applied Meteorology, 41, 792–810.

    Article  Google Scholar 

  • Harlan, S. L., Brazel, A. J., Prashad, L., Stefanov, W. L., & Larson, L. (2006). Neighborhood microclimates and vulnerability to heat stress. Social Science & Medicine, 63, 2847–2863.

    Article  Google Scholar 

  • Henschel, A., Burton, L. L., Margolis, L., & Smith, J. E. (1969). An analysis of the heat deaths in St. Louis during July, 1966. American Journal of Public Health, 59, 2232–2242.

    Article  CAS  Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007). Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, Pachauri, R.K. and Reisinger, A. (Eds.), IPCC, Geneva, Switzerland. pp 104 (http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html).

  • ISO International Organization for Standardization 31010:2009 Risk management—Principles and guidelines http://www.iso.org/iso/catalogue_detail?csnumber=43170.

  • Jarvis, C. H., & Stuart, N. (2001a). A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part I: The selection of “guiding” topographic and land cover variables. Journal of Applied Meteorology, 40, 1060–1074.

    Article  Google Scholar 

  • Jarvis, C. H., & Stuart, N. (2001b). A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part II: The interaction between number of guiding variables and the type of interpolation method. Journal of Applied Meteorology, 40, 1075–1084.

    Article  Google Scholar 

  • Johnson, D. P., & Wilson, J. S. (2009). The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia. Applied Geography, 29, 419–434. doi:10.1016/j.apgeog.2008.11.004.

    Article  Google Scholar 

  • Katsouyanni, K., Trichopoulos, D., Zavitsanos, X., & Touloumi, G. (1988). The 1987 Athens heatwave. Lancet, 2, 573.

    Article  CAS  Google Scholar 

  • Keramitsoglou, I., Daglis, I. A., Amiridis, V., Chrysoulakis, N., Ceriola, G., Manunta, P., et al. (2012). Evaluation of satellite-derived products for the characterization of the urban thermal environment. Journal of Applied Remote SensingSpecial Issue: Advances in Remote Sensing for Monitoring Global Environmental Changes, 6, 061704.

    Article  Google Scholar 

  • Keramitsoglou, I., Kiranoudis, C. T., Ceriola, G., Weng, Q., & Rajasekard, U. (2011). Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sensing of Environment, 115(3080–3090), 2011.

    Google Scholar 

  • Kusaka, H., Kondo, H., Kikegawa, Y., & Kimura, F. (2001). A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and SLAB models. Boundary-Layer Meteorol., 101, 329–358.

    Article  Google Scholar 

  • Laaidi, K., et al. (2011). The impact of heat islands on mortality in Paris during the August 2003 heatwave. Environ Health Perspect, 120, 2. doi:10.1289/ehp.1103532.

    Article  Google Scholar 

  • LSA SAF (2010), Down-welling longwave flux (DSLF) product user manual, Issue 3.3, Sept. 2010 (Available on http://landsaf.meteo.pt).

  • LSA SAF (2011), Down-welling surface shortwave flux (DSSF) product user manual, Issue 2.6v2, July 2011 (Available on http://landsaf.meteo.pt).

  • Maiheu, B., Ridder, K. D., Dousset, B., Manuta, P., Ceriola, G., Viel, M., Daglis, I. A., et al. (2010). Modelling air temperature via assimilation of satellite derived surface temperature within the Urban Heat Island Project. In EARSel Workshop Proceedings of the Joint SIG Workshop Urban3DRadarThermal Remote Sensing and Developing Countries, 162–181.

  • Mamdani, E. H. (1974). Application of fuzzy algorithms for simple dynamic plants. Proceedings of IEE, 121(12), 1585–1588.

    Google Scholar 

  • Manunta et al. (2010a). Design justification file v.4, ESA project: “Urban Heat Island and thermography”—Contract number 21913/08/I-LG.

  • Manunta, P., Ceriola, G., Daglis, I. A., de Ridder, K., Giannaros, T., Keramitsoglou et al. (2010b). Urban Heat Islands and urban thermography. In Proc. ESA Living Planet Symposium, ESA SP-686, European Space Agency.

  • Manunta et al. (2011). Product validation report v.3, ESA Project: “Urban Heat Island and thermography”—Contract number 21913/08/I-LG.

  • Martilli, A., Clappier, A., & Rotach, M. W. (2002). An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorol., 104, 261–304.

    Article  Google Scholar 

  • Masson, V. (2000). A physically-based scheme for the urban energy budget in atmospheric models’. Boundary-Layer Meteorol., 98, 357–397.

    Article  Google Scholar 

  • McMichael, A. J., Wilkinson, P., Kovats, R. S., Pattenden, S., Hajat, S., Armstrong, B., et al. (2008). International study of temperature, heat and urban mortality: The ‘ISOTHURM’ project. International Journal of Epidemiology, 37, 1121–1131.

    Article  Google Scholar 

  • Meehl, G. A., & Tibaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994–997.

    Article  CAS  Google Scholar 

  • Metaxas, D. A., & Kallos, G. (1980). Heat waves from a synoptic point of view. Rivista di Meteorologia Aeronautica JL, 2–3, 107–119.

    Google Scholar 

  • Oke, T. R., Johnson, D. G., Steyn, D. G., & Watson, I. D. (1991). Simulation of surface urban heat island under ideal conditions at night—Part 2: Diagnosis and causation. Boundary Layer Meteorology, 56, 339–358.

    Article  Google Scholar 

  • Oke, T. R. (2006). Initial guidance to obtain representative meteorological observations at urban sites. WMO Instruments and Observing Methods, Report No 81, WMO/TD-No. 1250 (Available at http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-81/IOM-81-UrbanMetObs.pdf).

  • Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438, 310–317.

    Article  CAS  Google Scholar 

  • Rigo, G., & Parlow, E. (2007). Modelling the ground heat flux of an urban area using remote sensing data. Theoretical and Applied Climatology, 90, 185–199.

    Article  Google Scholar 

  • Roberts, S., Oke, T. R., Grimmond, C. S. B., & Voogt, J. (2006). Tests of four methods to estimate urban heat storage in central Marseille. Journal of Applied Meteorology and Climatology, 45, 1766–1781.

    Article  Google Scholar 

  • Ruddell, D.M., Harlan, S.L., Grossman-Clarke, S., & Buyantuyev, A. (2010). Risk and exposure to extreme heat in microclimates of Phoenix, AZ. In Geospatial techniques in urban hazard and disaster analysis, P.S. Showalter, Y. Lu (eds.), Geotechnologies and the environment 2, doi 10.1007/978-90-481-2238-7_9, Springer Science + Business Media B.V. 2010.

  • Schuman, S. H. (1972). Patterns of urban heat-wave deaths and implications for prevention: Data from New York and St. Louis during July 1996. Environmental Researc, h, 5, 59–75.

    Article  CAS  Google Scholar 

  • Semenza, J. C., McCullough, J. E., Flanders, W. D., McGeehin, M. A., & Lumpkin, J. R. (1999). Excess hospital admissions during the July 1995 heat wave in Chicago. American Journal of Preventive Medicine, 16(4), 269–277.

    Article  CAS  Google Scholar 

  • Shamrock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., Powers, J. G., et al. (2005). A description of the advanced research WRF Version 2. NCAR Technical Note.

  • Smoyer, K. (1998). Putting risk in its place: Methodological considerations for investigating extreme event health risk. Social Science & Medicine, 47, 1809–1824.

    Article  CAS  Google Scholar 

  • Theoharatos, G., Pantavou, K., Mavrakis, A., Spanou, A., Katavoutas, G., Efstathiou, P., et al. (2010). Heat waves observed in 2007 in Athens, Greece: Synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environmental Research, 110(2), 152–161.

    Article  CAS  Google Scholar 

  • WMO World Meteorological Organization (2008). Heat–health action plans, edited by Franziska Matthies, Graham Bickler, Neus Cardeñosa Marín and Simon Hales. ISBN 978 92 890 7191 8 http://www.euro.who.int/en/what-we-publish/abstracts/heathealth-action-plans.

  • WMO World Meteorological Organization (2011). Weather extremes in a changing climate: Hindsight on foresight, ISBN: 978-92-63-11075-6, http://www.wmo.int/pages/mediacentre/news/documents/1075_en.pdf.

  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338–353.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Dimitra Founda from the Institute of Environmental Research and Sustainable Development of NOA for providing the station dataset and Ms. Maria Mihelaraki from the Hellenic National Meteorological Service for her contribution regarding heat waves in Athens. Census block data were provided by the Hellenic Statistical Authority (www.statistics.gr). The work was funded by the European Space Agency project ‘Urban Heat Islands and Urban Thermography’ (www.urbanheatisland.info; Grant no. 21913/08/I-LG). The authors wish to acknowledge the input from the anonymous reviewers, which substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iphigenia Keramitsoglou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keramitsoglou, I., Kiranoudis, C.T., Maiheu, B. et al. Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic. Environ Monit Assess 185, 8239–8258 (2013). https://doi.org/10.1007/s10661-013-3170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3170-y

Keywords

Navigation