Skip to main content

Advertisement

Log in

Sand as a relevant fraction in geochemical studies in intertidal environments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil and sediment samples from several intertidal environment exposed to different types of contamination were studied to investigate the importance of grain size in relation to the capacity of the substrates to retain trace metals. The unfractionated samples (referred to as bulk samples) were separated into the following grain/size fractions: fine–coarse sand (2−0.100 mm), very fine sand (0.100−0.050 mm), silt (0.050−0.002 mm), and clay (0.002 mm). The sample into its fractions was carried out was in a glove box under high-purity N2 atmosphere in order to minimize any alterations to the samples. The bulk samples were characterized in terms of physicochemical properties such as pH, redox potential, and grain size. The total organic carbon (TOC), total sulfur (S), iron (Fe) pyrite, Fe, and manganese (Mn), and trace metals lead (Pb), mercury (Hg), chromium (Cr), and nickel (Ni) were analyzed in the bulk samples and in each fraction. The sand fractions were also examined by scanning electron microscopy (SEM). Comparisons of the above parameters were made between fractions and between each fraction and the corresponding bulk sample. The fine–coarse sand fraction contained high levels of the primary elements of the geochemical processes that occur in marine sedimentary environments such as TOC, total Fe, Mn, and S. The net concentrations of these four elements were higher in the fine-coarse sand fraction than in the very fine sand fraction and were similar to the net concentrations in the silt and clay fractions. Detailed SEM analysis of the sand coarse fraction revealed the presence of Fe and aluminum oxyhydroxide coatings in the oxic layers, whereas the framboidal pyrites and coatings observed in the anoxic layers were Fe sulfides. The presence of the various coatings explains why the trace metal concentrations in the sand fine–coarse fraction were similar to those in the clay fraction and higher than those in the very fine sand fraction. The present results highlight the importance of the sand fraction, which is generally disregarded in geochemical and environmental studies of sedimentary layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackermann, F. (1980). A procedure for correcting grain size effect in heavy metal analysis of estuarine and coastal sediments. Environmental Technology Letters, 1, 518–527.

    Article  CAS  Google Scholar 

  • Ackermann, F., Bergmann, M., & Schleichert, G. U. (1983). Monitoring of heavy metals in coastal and estuarine sediments—a question of grain size: <20 μm versus <60 μm. Environmental Technology Letters, 4, 317–328.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments. New York: Springer.

    Book  Google Scholar 

  • Alloway, B. J. (1990). Heavy metals in soils. London: Blackie.

    Google Scholar 

  • Álvarez-Iglesias, P., Rubio, B., & Vilas, F. (2000). Plomo en sedimentos y organismos de la ensenada de San Simón. Thalassas, 16, 81–94.

    Google Scholar 

  • Araujo, M. F., Bernard, P. C., & Van Grieken, R. E. (1988). Heavy metal contamination in sediments form the Belgian Coast and Sheldt estuary. Marine Pollution Bulletin, 19, 269–273.

    Article  Google Scholar 

  • Beiras, R., Fernández, N., González, J. J., Besada, V., & Schultze, F. (2002). Mercury concentrations in seawater, sediments and wild mussels from the coast of Galicia (NW Spain). Marine Pollution Bulletin, 44, 345–349.

    Article  CAS  Google Scholar 

  • Berner, R. A. (1970). Sedimentary pyrite formation. Amer. J. Sci., 268, 1–23.

    Article  CAS  Google Scholar 

  • Brook, E. J., & Moore, J. N. (1988). Particle-size and chemical control of As, Cd, Cu, Fe, Mn, Ni, Pb and Zn in bed sediment from the Clark Fork river, Montana (USA). Sci. Tot. Environ., 76, 247–266.

    Article  CAS  Google Scholar 

  • Bruland, K. W., Franks, R. P., Knauer, G. A., & Martin, J. H. (1979). Sampling and analytical methods for the nanogram per litre determination of copper, cadmium, zinc, and nickel in seawaters. Analytical Chimica Acta, 105, 233–241.

    Article  CAS  Google Scholar 

  • Butler, I. A., & Rickard, D. (2000). Framboidal pyrite formation via the oxidation of iron II monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta, 64, 2665–2672.

    Article  CAS  Google Scholar 

  • Cambardella, C. A., Gajda, A. M., Doran, J. W., Wienhold, B. J., & Kettler, T. A. (2001). Estimation of particulate and total organic matter by weight loss-on-ignition. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment methods for soil carbon (pp. 349–359). Boca Raton, FL: Lewis.

    Google Scholar 

  • Canfield, D. E., Rainswell, R., & Bottrell, S. (1992). The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292, 659–683.

    Article  CAS  Google Scholar 

  • Carral, E., Puente, X., Villares, R., & Carballeira, A. (1995). Background heavy metals levels in estuarine sediments and organisms in Galicia (NW Spain) as determined by modal analysis. Science of the Total Environment, 172, 175–188.

    Article  CAS  Google Scholar 

  • Carral, E., Villares, R., Puente, X., & Carballeira, A. (1995). Influence of watershed lithology on heavy metal levels in estuarine sediments and organisms in Galicia (NW Spain). Marine Pollution Bulletin, 30, 604–608.

    Article  CAS  Google Scholar 

  • Castellanos, E. M., Figueroa, M. E., & Davy, A. J. (1994). Nucleation and facilitation in saltmarsh sucession: interactions between Spartina marítima and Arthronemum perenne. Journal of Ecology, 82, 239–248.

    Article  Google Scholar 

  • De Groot, A. J., & Allersma, E. (1975). Field observations on the transport of heavy metals in sediments. In P. A. Krenkel (Ed.), Heavy metals in the aquatic environment (pp. 85–101). Oxford: Pergamon.

    Google Scholar 

  • Din, Z. B. (1992). Use of aluminium to normalize heavy-metal data from estuarine and coastal sediments of Straits of Melaka. Marine Pollution Bulletin, 24, 484–491.

    Article  CAS  Google Scholar 

  • Droppo, I. G., & Jaskot, C. (1995). Impact of river transport characteristics on contaminant sampling error and design. Environmental Science and Technology, 28, 161–170.

    Article  Google Scholar 

  • Förstner, U. (1977). Metal concentrations in freshwater sediments—natural background and cultural effects. In H. L. Golterman (Ed.), Interactions between sediments and fresh water (pp. 94–103). The Hague: Junk.

    Google Scholar 

  • Förstner, U., & Wittmann, G. T. (1979). Metal pollution in the aquatic environment. Berlin: Springer. 486 pp.

    Book  Google Scholar 

  • Gee, G. W., & Or, D. (2002). Particle-size analysis. In J. H. Dane & G. C. Topp (Eds.), Methods of soil analysis. Part 4, physical methods (pp. 255–293). Soil Science Society of America: Madison, WI.

    Google Scholar 

  • Horowitz, A. J., & Eirick, K. A. (1987). The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2, 437–451.

    Article  CAS  Google Scholar 

  • Huerta-Díaz, M. A., & Morse, J. W. (1990). A quantitative method for determination of trace metals in anoxic marine sediments. Marine Chemistry, 29, 119–144.

    Article  Google Scholar 

  • Huerta-Díaz, M. A., & Morse, J. W. (1992). Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56, 2681–2702.

    Article  Google Scholar 

  • Kornicker, W. A., & Morse, J. W. (1991). Interactions of divalent cations with the surface of pyrite. Geochimica et Cosmochimica Acta, 55, 2159–2171.

    Article  CAS  Google Scholar 

  • Krumgalz, B. S. (1989). Unusual grain size effect on trace metals and organic matter distribution in contaminated sediments. Marine Pollution Bulletin, 20, 608–611.

    Article  CAS  Google Scholar 

  • Krumgalz, B. S., Fainshtein, G., & Cohen, A. (1992). Grain size effect on anthropogenic trace metal and organic matter distribution in marine sediments. Science of the Total Environment, 116, 15–30.

    Article  CAS  Google Scholar 

  • Loring, D. H. (1990). Lithium- a new approach for the granulometrical normalization of trace metal data. Marine Chemistry, 29, 156–168.

    Article  Google Scholar 

  • Luoma, S. N., & Bryan, G. W. (1978). Factors controlling the availability of sediment-bound lead to the estuarine bivalve Scrobicularia plana. Journal of the Marine Biological Association of the United Kingdom, 58, 793–802.

    Article  CAS  Google Scholar 

  • Mayer, L. M., & Fink, K. J. R. (1980). Granulometric dependence of chromium accumulation in estuarine sediments in Maine. Estur. Coast. Mar. Sci., 11, 491–503.

    Article  Google Scholar 

  • Morse, J. W., & Luther, G. W., III. (1999). Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63, 3373–3378.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1996). A history of global metal pollution. Science, 272, 223–224.

    Article  CAS  Google Scholar 

  • Otero, X. L., & Fernández-Sanjurjo, M. J. (2000). Mercury in faeces and feathers of yellow-legged gull (Larus cachinans) and in soils from their breeding sites (Cíes Islands-NW Spain) in the vicinity of a chor-alkali plant. Fresenius Envir. Bull., 9, 056–063.

    CAS  Google Scholar 

  • Otero, X. L., & Macías, F. (2002a). Variation with depth and season in metal sulfides in salt marsh soils. Biogeochemistry, 61, 247–268.

    Article  CAS  Google Scholar 

  • Otero, X. L., & Macías, F. (2002b). Fraccionamiento de Fe en fluvisoles de las marismas de la Ría de Ortigueira (Galicia). Edafología, 9, 257–272.

    Google Scholar 

  • Otero, X. L., & Macías, F. (2003). Variation with depth and season in metal sulfides in salt marsh soils. Biogeochemistry, 61, 247–268.

    Article  Google Scholar 

  • Otero, X. L., Huerta-Díaz, M. A., & Macías, F. (2000). Heavy metals geochemistry of saltmarsh soils from the ría of Ortigueira (mafic and ultramafic areas, NW Iberian Peninsula). Environmental Pollution, 110, 285–296.

    Article  CAS  Google Scholar 

  • Otero, X. L., Sánchez, J. M., & Macías, F. (2000). Bioaccumulation of heavy metals in thionic fluvisols by a marine polychaete (Nereis diversicolor): the role of metal sulfide. Journal of Environmental Quality, 29, 1133–1141.

    Article  CAS  Google Scholar 

  • Otero, X. L., Huerta-Díaz, M. A., & Macías, F. (2003). Influence of a turbidite deposit on the extent of pyritization of iron, manganese and trace metals in sediments from the Guaymas Basin, Gulf of California (Mexico). Applied Geochemistry, 18, 1149–1163.

    Article  CAS  Google Scholar 

  • Otero, X. L., Vidal, P., Calvo, R., & Macías, F. (2005). Trace elements in biodeposits and sediments from mussel culture in the ría de Arousa (Galica, NW Spain). Environmental Pollution, 136, 119–134.

    Article  CAS  Google Scholar 

  • Otero, X. L., Calvo, R., & Macías, F. (2006). Sulphur partitioning in sediments and biodeposits below mussel rafts in the ría de Arousa (Galicia, NW Spain). Marine Environmental Research, 61, 305–325.

    Article  CAS  Google Scholar 

  • Otero, X. L., Calvo, R. M., & Macías, F. (2009). Iron geochemistry under mussel rafts in the Galician ria system (Galicia-NW Spain). Estuarine, Coastal and Shelf Science, 81, 83–93.

    Article  Google Scholar 

  • Pekey, H., Karakas, D., Ayberk, S., Tolum, L., & Bakoglu, M. (2004). Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48, 946–953.

    Article  CAS  Google Scholar 

  • Ponnamperuma, F. N. (1972). The chemistry of sumerged soils. Advances in Agronomy, 24, 29–98.

    Article  CAS  Google Scholar 

  • Raiswell, B., Canfield, D., & Berner, R. A. (1994). A comparación of iron extraction methods for the determination of degree and the recognition of iron limitation-pyrite formation. Chemical Geology, 111, 101–110.

    Article  CAS  Google Scholar 

  • Rubio, R., Nombela, M. A., & Vilas, F. (2000). Análisis multivariante aplicado a la determinación del fondo geoquímico para metales pesados en sedimentos submareales actuales de la ría de Vigo. Geotemas, 1, 159–164.

    Google Scholar 

  • Salomons, W., & Förstner, U. (1984). Metals in hydrocycle (p. 349). Berlin: Springer.

    Book  Google Scholar 

  • Schulte, E. E., & Hopkins, B. G. (1996). Estimation of soil organic matter by weight loss-on-ignition. In F. R. Magdoff, M. A. Tabatabai, & E. A. Hanlon jr (Eds.), Soil organic matter: analysis and interpretation. Madison, WI, USA: Soil Science of America, Inc.

    Google Scholar 

  • Simón, M., Ortiz, I., García, I., Fernández, E. J., Fernández, J., Dorronsoro, C., et al. (1999). Pollution of soils by the toxic spill of a pyrite mine (Aznalcollar, Spain). Science of the Total Environment, 242, 106–115.

    Article  Google Scholar 

  • Soil Survey Staff. (1993). Soil survey manual. Washington DC: USDA.

    Google Scholar 

  • Stone, M., & Droppo, I. G. (1996). Distribution of lead, copper and zinc in size-fractionated river bed sediment in two agricultural catchments of southern Ontario, Canadá. Environmental Pollution, 93, 353–362.

    Article  CAS  Google Scholar 

  • Sutherland, R. (2003). Lead in grain size fractions of road-deposited sediment. Environmental Pollution, 121, 229–237.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1982). Particulate trace metal speciation in stream sediments and relationships with grain size: implications for geochemical exploration. Journal of Geochemical Exploration, 16, 77–104.

    Article  CAS  Google Scholar 

  • Turner, F.T., & Patrick, J.R., 1968. Chemical changes in waterlogged soils as a result of oxygen depletion. 9th Congr. Soil Science IV: 53–65. Adelaide. Australia.

  • Villares, R., Puente, X., & Carballeira, A. (2003). Heavy metals in sandy sediments of the Rías Baixas (NW Spain). Environmental Monitoring and Assessment, 83, 129–144.

    Article  CAS  Google Scholar 

  • Whitney, P. R. (1975). Relationship of manganese–iron oxides and associated heavy metals to grain size in stream sediments. Journal of Geochemical Exploration, 4, 251–263.

    Article  CAS  Google Scholar 

  • Wilkin, R. T., Barnes, H. L., & Brantley, S. (1996). The size distribution of framboidal pyrite in modern sediments: as indicator of redox conditions. Geochimica et Cosmochimica Acta, 60, 3897–3912.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the project entitled “Monitorización dos procesos bioxeoquímicos nas lagoas litorais de Galicia en relación coa súa calidade ambiental e respuesta ao cambio climático”, funded by the Consellería de Innovación e Industria-Xunta de Galicia (PGIDIT08MDS036000PR). We thank María J. Santiso for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Otero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otero, X.L., Huerta-Díaz, M.A., De La Peña, S. et al. Sand as a relevant fraction in geochemical studies in intertidal environments. Environ Monit Assess 185, 7945–7959 (2013). https://doi.org/10.1007/s10661-013-3146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3146-y

Keywords

Navigation