Evaluating the use of algal pigments to assess the biological condition of streams

Abstract

Assessments of stream condition using benthic algal communities have traditionally relied on taxonomy-based approaches to compare community structure at sites exposed to a stressor versus reference sites. Taxonomy-based methods are often effective, but they require high levels of training and are relatively time consuming and expensive. We examined the utility of assessing stream biological condition using algal pigments. We used gradient and control–impact study designs in 2008 and 2009 to compare the extent that algal pigments versus taxonomic descriptors of algal community structure varied along a 10.5-km stretch of the Flat River (South Nahanni River watershed, NWT, Canada) encompassing a gradient of nutrients and metals at sites upstream, adjacent to and downstream of a northern metals mine. We also calculated costs to quantify algal pigments relative to taxonomy-based methods. Multivariate analyses (ANOSIM tests, redundancy analysis) identified that pigment concentrations from benthic algal samples differed significantly (p < 0.05) between non-exposed and exposed river sites and were related to variations in water physico-chemical conditions. By contrast, community composition determined from taxonomy-based enumeration to the Order and Family levels did not differ significantly between non-exposed and exposed sites, and relations with water physico-chemical conditions were weaker and inconsistent between the study years. In-house costs to quantify algal pigments were lower than commercial rates to describe community structure using taxonomy. Thus, our data suggests that analysis of benthic algal pigments represents a viable and cost-effective bio-monitoring method for assessing anthropogenic effects on stream condition that merits further evaluation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bailey, R. C., Norris, R. H., & Reynoldson, T. B. (2004). Bioassessment of freshwater ecosystems using the reference condition approach. Norwell: Kluwer Academic.

    Google Scholar 

  2. Bailey, R. C., Scrimgeour, G., Coté, D., Kehler, D., Linke, S., & Cao, Y. (2012). Bioassessment of stream ecosystems enduring a decade of simulated degradation: lessons for the real world. Canadian Journal of Fisheries and Aquatic Science, 69, 784–796.

    Article  Google Scholar 

  3. Biggs, B. J. F., & Kilroy, C. (2000). Stream periphyton monitoring manual. Christchurch: National Institute for Water and Atmospheric Research.

    Google Scholar 

  4. Birks, H. J. B. (2010). Numerical methods for the analysis of diatom assemblage data. In J. P. Smol & E. F. Stoermer (Eds.), The diatoms: applications for the environmental and earth sciences (Vol. 29). Cambridge: Cambridge University Press.

    Google Scholar 

  5. Bowman, M. F., & Somers, K. M. (2005). Considerations when using the reference condition approach for bioassessment of freshwater ecosystems. Water Quality Research Journal of Canada, 40(3), 347–360.

    CAS  Google Scholar 

  6. Bowman, M., Spencer, P., Dubé, M., & West, D. (2010). Regional reference variation provides ecologically meaningful protection criteria for northern world heritage site. Integrated Environmental Assessment and Management, 6, 12–27.

    Google Scholar 

  7. CCME [Canadian Council of Ministers of the Environment]. (2003). Canadian water quality guidelines for the protection of aquatic life. Hull, QC: Environment Canada.

  8. Cervantes, C., Campos-Gracía, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., et al. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbial Reviews, 25, 335–347.

    Article  CAS  Google Scholar 

  9. Chambers, P. A., Guy, M., Roberts, E. E., Charlton, M. N., Kent, R., Gagnon, C., Grove, F., & Foster, N. (2001). Nutrients and their impact on the Canadian environment. Ottawa, ON: Agriculture and Agrifood Canada, Environment Canada, Fisheries and Oceans Canada, Health Canada, National Resources Canada. 241 p.

  10. Chambers, P. A., Culp, J. M., Glozier, N. E., Cash, K. J., Wrona, F. J., & Noton, L. (2006). Northern rivers ecosystem initiative: nutrients and dissolved oxygen—issues and impacts. Environmental Monitoring and Assessment, 113, 117–141.

    Article  CAS  Google Scholar 

  11. Clark, K. R., & Gorley, R. N. (2006). PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  12. Clark, K. R., & Warwick, R. M. (2001). Change in marine communities: an approach to statistical analysis and interpretation (2nd ed.). Plymouth: PRIMER-E.

    Google Scholar 

  13. Clausen, B., & Biggs, B. J. G. (1997). Relationships between benthic biota and hydrological indices in New Zealand streams. Freshwater Biology, 38, 327–342.

    Article  Google Scholar 

  14. Cooper, S. D., & Barmuta, L. A. (1993). Field experiments in biomonitoring. In D. M. Rosenberg & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 399–441). New York: Chapman and Hall.

    Google Scholar 

  15. Dorigo, U., Bourrain, X., Bérard, A., & Leboulanger, C. (2004). Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. The Science of the Total Environment, 318, 101–114.

    Article  CAS  Google Scholar 

  16. Dorigo, U., Leboulanger, C., Bérard, A., Bouchez, A., Humbert, J. F., & Montuelle, B. (2007). Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area. Aquatic Microbial Ecology, 50, 91–102.

    Article  Google Scholar 

  17. Dubé, M., Culp, J., & Scrimgeour, G. (1997). Nutrient limitation and herbivory: processes influenced by bleached kraft pulp mill effluent. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2584–2595.

    Google Scholar 

  18. Environment Canada. (1994). Manual of analytical methods: major ions and nutrients (Vol. 1). Burlington: National Laboratory for Environmental Testing, Canadian Center for Inland Waters.

    Google Scholar 

  19. Environment Canada. (2011). Canadian aquatic biomonitoring network, field manual, wadeable streams. Ministry of the environment, Catalog # En84-87/2012E. Dartmouth, NS: Environment Canada.

  20. Environment Canada. (2012). Metal mining technical guidance for environmental effects monitoring. Catalog # En14-61/2012E. Gatineau, QC: Environment Canada.

  21. Gensemer, R. W., & Playle, R. C. (1999). The bioavailability and toxicity of aluminum in aquatic environments. Critical Reviews in Environmental Science and Technology, 29(4), 315–450.

    Article  CAS  Google Scholar 

  22. Genter, R. B., Cherry, D. S., Smith, E. P., & Cairns, J. (1987). Algal-periphyton population and community changes from zinc stress in stream mesocosms. Hydrobiologia, 153, 261–275.

    Article  CAS  Google Scholar 

  23. Gold, C., Feurtet-Mazel, A., Coste, M., & Boudou, A. (2003). Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Archives of Environmental Contamination and Toxicology, 44, 189–197.

    Article  CAS  Google Scholar 

  24. Green, R. H. (1979). Sampling design and statistical methods for environmental biologists. New York: Wiley.

    Google Scholar 

  25. Guasch, H., & Sabater, S. (1998). Light history influences the sensitivity to atrazine in periphytic algae. Journal of Phycology, 34, 233–241.

    Article  CAS  Google Scholar 

  26. Hall, R. I., Leavitt, P. R., Smol, J. P., & Zirnhelt, N. (1997). Comparison of diatoms, fossil pigments and historic records as measures of lake eutrophication. Freshwater Biology, 38, 401–417.

    Article  Google Scholar 

  27. Halliwell, D., & Catto, S. (2003). How and why is aquatic quality changing at Nahanni National Park Reserve, NWT, Canada? Environmental Monitoring and Assessment, 88, 243–281.

    Article  CAS  Google Scholar 

  28. Hill, W. R. (1996). Factors affecting benthic algae. In R. J. Stevenson, M. L. Bothwell, & R. L. Lowe (Eds.), Algal ecology freshwater benthic ecosystems (pp. 121–144). San Diego: Academic.

    Google Scholar 

  29. Hill, B. H., Herlihy, A. T., Kaufmann, P. R., Stebenson, R. J., McCormick, F. H., & Burch Johnson, C. (2000). Use of periphyton assemblage data as an index of biotic integrity. Journal of the North American Benthological Society, 19, 50–67.

    Article  Google Scholar 

  30. Jeffrey, S. W., Mantoura, R. F. C., & Wright, S. W. (1997). Phytoplankton pigments in oceanography. Paris: UNSECO Publishing.

    Google Scholar 

  31. Kilgour, B. W., Munkittrick, K. R., Portt, C. B., Hedley, K., Culp, J., Dixit, S., et al. (2005). Biological criteria for municipal wastewater effluent monitoring programs. Biological criteria for municipal wastewater effluent monitoring programs. Water Quality Research Journal of Canada, 40, 374–387.

    CAS  Google Scholar 

  32. Kilgour, B. W., Dubé, M. G., Hedley, K., Portt, C. B., & Munkittrick, K. R. (2007). Aquatic environmental effects monitoring guidance for environmental assessment practitioners. Environmental Monitoring and Assessment, 130, 423–436.

    Article  CAS  Google Scholar 

  33. King, L., Clarke, G., Bennion, H., Kelly, M., & Yallop, M. (2006). Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology, 18, 15–25.

    Article  Google Scholar 

  34. Küpper, H., Šetlík, I., Spiller, M., Küpper, F. C., & Prášil, O. (2002). Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. Journal of Phycology, 38, 429–441.

    Google Scholar 

  35. Lauridsen, T. L., Schluter, L., & Johansson, L. S. (2011). Determining algal assemblages in oligotrophic lakes and streams: comparing information from newly developed pigment/chlorophyll a ratios with direct microscopy. Freshwater Biology, 56, 1638–1651.

    Article  Google Scholar 

  36. Leavitt, P. R., & Findlay, D. L. (1994). Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic lake 227, Experimental Lakes Area, Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 51, 2286–2299.

    Article  CAS  Google Scholar 

  37. Leavitt, P. R., & Hodgson, D. A. (2001). Sedimentary pigments. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking environmental change using lake sediments (Terrestrial, algal, and siliceous indicators, Vol. 3, pp. 295–325). Dordrecht: Kluwer Academic.

    Google Scholar 

  38. Leavitt, P. R., Carpenter, S. R., & Kitchell, J. F. (1989). Whole-lake experiments: the annual record of fossil pigments and zooplankton. American Society of Limnology and Oceanography, 34(4), 700–717.

    Article  Google Scholar 

  39. Lobe, S. L. (1981). An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnology and Oceanography, 26(2), 394–399.

    Article  Google Scholar 

  40. Macfie, S. M., Tarmohamed, Y., & Welbourn, P. M. (1994). Effects of cadmium, cobalt, copper, and nickel on growth of the green alga Chlamydomonas reinhardtii: the influences of the cell wall and pH. Archives of Environmental Contamination and Toxicology, 27, 454–458.

    Article  CAS  Google Scholar 

  41. Morin, S., Thuy Duong, T., Herlory, O., Feurtet-Mazel, A., & Coste, M. (2008). Cadmium toxicity and bioaccumulation in freshwater biofilms. Archives of Environmental Contamination and Toxicology, 54, 173–186.

    Article  CAS  Google Scholar 

  42. Peterson, H. G., Healey, F. P., & Wagemann, R. (1984). Metal toxicity to algae: a highly pH dependent phenomenon. Canadian Journal of Fisheries and Aquatic Science, 41, 974–979.

    Article  CAS  Google Scholar 

  43. Pinto, E., Sigaud-Kutner, T. C. S., Leitão, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018.

    Article  CAS  Google Scholar 

  44. Prescott, G. W. (1951). Algae of the western Great Lakes area. Bloomfield Hills: Cranbrook.

    Google Scholar 

  45. Reavie, E. D., & Smol, J. P. (1998). Epilithic diatoms of the St. Laurence River and their relationships to water quality. Canadian Journal of Botany, 76, 251–257.

    Google Scholar 

  46. Resh, V. H. (2008). Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environmental Monitoring and Assessment, 138, 131–138.

    Article  Google Scholar 

  47. Reynoldson, R. B., Norris, R. H., Resh, V. H., Day, K. E., & Rosenberg, D. M. (1997). The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16(4), 833–852.

    Article  Google Scholar 

  48. Rhea, D. T., Harper, D. D., Farag, A. M., & Brumbaugh, W. G. (2006). Biomonitoring in the boulder river watershed, Montana, USA: metal concentrations in biofilm and macroinvertebrates, and relations with macroinvertebrate assemblage. Environmental Monitoring and Assessment, 115, 381–393.

    Article  CAS  Google Scholar 

  49. Rott, E., Duthie, H. C., & Pipp, E. (1998). Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1443–1453.

    Article  CAS  Google Scholar 

  50. Sabater, S., Buchaca, T., Cambra, J., Catalan, J., Guasch, H., Ivorra, N., et al. (2003). Structure and function of benthic algal communities in an extremely acid river. Journal of Phycology, 39, 481–489.

    Article  CAS  Google Scholar 

  51. Scrimgeour, G. J., Hvenegaard, P. H., & Tchir, J. (2008). Cumulative effects of industrial activity on the occurrence and composition of stream fish communities in two boreal forest watersheds. Environmental Management, 42, 957–970.

    Article  Google Scholar 

  52. Spencer, P., Bowman, M. F., & Dubé, M. G. (2008). A multitrophic approach to monitoring the effects of metal mining in otherwise pristine and ecologically sensitive rivers in Northern Canada. Integrated Environmental Assessment and Management, 4, 327–343.

    Article  CAS  Google Scholar 

  53. Stevenson, R. J., & Bahls, L. L. (1999). Periphyton protocols. In: M. T. Barbour, J. Gerritsen, B. D. Snyder, & J. B. Stribling (Eds), Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish, 2nd Edition. EPA 841-B-99-002. Washington, DC: US Environmental Protection Agency, Office of Water.

  54. ter Braak, C. J. F., & Šmilauer, P. (2002). Canoco reference manual and canodraw for windows user's guide. Software for canonical community ordination (ver 4.5). Ithaca: Microcomputer Power.

    Google Scholar 

  55. Thomas, K. E., Kluke, A., Hall, R. I., Paterson, A. M., & Winter, J. G. (2011). Assessment of benthic algal biomintoring protocols to evaluate effects of shoreline development on the nearshore zone of Precambrian Shield lakes in Ontario. Lake and Reservoir Management, 27, 398–413.

    Article  CAS  Google Scholar 

  56. Underwood, A. J. (1994). On beyond BACI—sampling designs that might reliably detect environmental disturbances. Ecological Applications, 4, 3–15.

    Article  Google Scholar 

  57. Walker, S., Ribey, S., Trudel, L., & Porter, E. (2003). Canadian environmental effects monitoring: experiences with pulp and paper and metal mining regulatory programs. Environmental Monitoring and Assessment, 88, 311–326.

    Article  CAS  Google Scholar 

  58. Wehr, J. D., & Sheath, R. G. (Eds.). (2003). Freshwater algae of North America: ecology and classification. San Diego: Academic.

    Google Scholar 

  59. White, M. S., Xenopoulos, M. A., Metcalfe, R. A., & Somers, K. M. (2011). Water level fluctuation thresholds of benthic macroinvertebrate richness, structure, and function in boreal stony littoral habitats. Canadian Journal of Fisheries and Aquatic Sciences, 68, 1695–1704.

    Article  Google Scholar 

  60. Winter, J. G., & Duthie, H. C. (1998). Effects of urbanization on water quality, periphyton and invertebrate communities in a southern Ontario stream. Canadian Water Resources Journal, 23(3), 245–257.

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by Parks Canada Agency, NSERC Strategic Partnership Projects Grant (to R.I. Hall), Aboriginal Affairs and Northern Development Canada, Environment Canada, North American Tungsten, Canadian Zinc Corporation, Northern Scientific Training Program (student travel funding) and the University of Waterloo (graduate student assistance). We thank Dana Haggarty for assistance during fieldwork and logistical support. Shape files for map, copyright: Department of Natural Resources Canada and Parks Canada Agency, all rights reserved.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Thomas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomas, K.E., Hall, R.I. & Scrimgeour, G.J. Evaluating the use of algal pigments to assess the biological condition of streams. Environ Monit Assess 185, 7895–7913 (2013). https://doi.org/10.1007/s10661-013-3143-1

Download citation

Keywords

  • Benthic algae
  • Bioassessment
  • Biological condition
  • High-performance liquid chromatography (HPLC)
  • Monitoring
  • Photosynthetic pigments