Skip to main content


Log in

Analysis of the invasion rate, impacts and control measures of Prosopis juliflora: a case study of Amibara District, Eastern Ethiopia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript


The tree Prosopis juliflora, introduced to Ethiopia in the 1970s to curb desertification, is imposing significant ecosystem and socioeconomic challenges. The objectives of this study are therefore to analyze the dynamics and associated impacts of the P. juliflora invasion over the period 1973–2004 and to evaluate the effectiveness of the management measures implemented to date. This required the analysis of Landsat images, field surveys, the use of structured questionnaires, and interviews. P. juliflora was found to invade new areas at an average rate of 3.48 km2/annum over the period 1973–2004. The high germination nature of the seed, mechanisms of seed dispersal, and its wide-range ecological adaptability are the main drivers for the high invasion rate. By the year 2020, approximately 30.89 % of the study area is projected to be covered by P. juliflora. The expansion has affected human health, suppressed indigenous plants, and decreased livestock productivity. The management measures that have been implemented are not able to yield the desirable results because of the limited spatial scale, cost, and/or improper planning and implementation. Therefore, the formulation of a strategy for management approaches that include the engagement of the community and the limiting of the number of vector animals within the framework of the current villagization program remain important. Moreover, risk assessment should be completed in the future before an exotic species is introduced into a certain area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  • Alemayehu, E. (2006). Irrigation management and institutional arrangement: The case of two irrigation scheme, Northeast Ethiopia. MSc thesis, Addis Ababa University, Addis Ababa, Ethiopia

  • Anagae, A., Reda, F., Tesfaye, G., Admasu, A., Ayalew, Y. (2004). Policy and stakeholder analysis for invasive plants management in Ethiopia. Ethiopian Agricultural Research Organization. Report submitted to CAB International under the PDF-B Phase of the UNEP/GEF-Funded Project: Removing Barriers to Invasive plants Management in Africa, Ethiopia, p. 60.

  • Asfaw, H., & Thulin, M. (1989). Mimosoideae. In I. Hedberg & S. Edwards (Eds.), Flora of Ethiopia: Pittosporaceae to Araliaceae (Vol. 3). Addis Ababa/Uppsala: Addis Ababa University/Uppsala University.

    Google Scholar 

  • Bleton, T. (2008). An assessment of this species, and recommendations for management. SAIS Project, RSPB, p 23.

  • Cacho, O. J., Wise, R. M., Hester, S. M., & Sinden, J. A. (2008). Bioeconomic modeling for control of weeds in natural environments. Ecological Economics, 65, 559–568.

    Article  Google Scholar 

  • Campbell, J. B. (1987). Introduction to remote sensing. New York: Guilford.

    Google Scholar 

  • Catford, J. A., Jansson, R., & Nilsson, C. (2009). Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions, 15, 22–40.

    Article  Google Scholar 

  • CBD (2010). Accessed 15 Feb 2012.

  • Chapman, P. M. (2012). Global climate change and risk assessment: Invasive species. Integrated Environmental Assessment and Management, 8, 199–200.

    Article  Google Scholar 

  • Clavero, M., & Garcia-Berthou, E. (2005). Invasive species are a leading cause of animal extinctions. TRENDS in Ecololgy and Evolution, 20(3), 110.

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 3746.

    Article  Google Scholar 

  • Cronk, Q. C. B., & Fuller, J. L. (2001). Plant invaders: The threat to natural ecosystems. People and plants conservation manual. London: Earthscan.

    Google Scholar 

  • Daehler, C. C., & Strong, D. R. (1994). Variable reproductive output among clones of Spartina alterniflora (Poaceae) invading San Francisco Bay, California: The influence of herbivory, pollination, and establishment site. American Journal of Botany, 81, 307–313.

    Article  Google Scholar 

  • FARM-Africa. (2009). A livelihood baseline survey in Amibara and Gewane weredas of Afar region. Dynamic Institute for Consultancy and Training. Final Report, p 121.

  • Geesing, D., Al-Khawalani, M., & Abba, M. (2004). Management of introduced Prosopis species: Can economic exploitation control an invasive species? Unasylva, 55, 36–44.

    Google Scholar 

  • Harding, G. B. (1987). The status of Prosopis as a weed. Applied Plant Science, 1, 43–48.

    Google Scholar 

  • Heady, H. F., & Child, R. D. (1994). Rangeland ecology and management. Oxford: Westview.

    Google Scholar 

  • Hester, S. M., Odom D. I. S., Cacho, O.J., Sinden J. A. (2004). Eradication of exotic weeds in Australia: Comparing effort and expenditure—Working Paper Series in Agricultural and Resource Economics. Biddeford: University of New England

  • Hilu, Y. W., Boyd, S., & Felker, P. (1982). Morphological diversity and taxonomy of California mesquites (Prosopis, Lepminosae). Madrono, 29(45), 237–254.

    Google Scholar 

  • Jorn, L. (2007). Is Prosopis a curse or a blessing?—An ecological–economic analysis of an invasive alien tree species in Sudan. Helsinki: Viikki Tropical Resources Institute (VITRI), University of Helsinki.

    Google Scholar 

  • Kassahun, Z. (1999). Mesquite (Prosopis juliflora) in Ethiopia. Arem, 5, 96–102.

    Google Scholar 

  • Kriticos, D. J., & Filmer, M. (2007). Weeds will thrive on climate change. Farming Ahead, 182, 38–40.

    Google Scholar 

  • Lambin, E. (1997). Modeling and monitoring land-cover change processes in tropical regions. Progress in Physical Geography, 21, 375–393.

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (1999). Remote sensing and image interpretation. New York: Wiley.

    Google Scholar 

  • McGinley, M. (2007). Invasive alien species in Africa: Developing effective responses. Accessed 23 March 2011

  • Mesele, S., Gebrekidan, H., Lemma, K., Coppock, D. (2006). Change in land cover and soil conditions for Yabelo district of the Borana plateau, Ethiopia. Pastoral Risk Management Project (PARIMA), Global Livestock Collaborative Research Support Program (GLCRSP), Davis

  • MoA (Ministry of Agriculture). (1997). Land resource inventory for the Afar National Regional State: Natural Resource Management and Regulatory Department. Addis Ababa: Ministry of Agriculture.

    Google Scholar 

  • Mohan, M., Pathan, S. K., Narendrareddy, K., Kandya, A., & Pandey, S. (2011). Dynamics of urbanization and its impact on land use/land cover: A case study of Megacity Delhi. Journal of Environmental Protection, 2, 1274–1283.

    Article  Google Scholar 

  • Mwangi, E., Swallow, B. (2005). Invasion of Prosopis juliflora and local livelihoods: Case study from the lake Baringo area of Kenya. ICRAF Working Paper no. 3. Nairobi: World Agroforestry Centre.

  • Nakano, H., Fujii, Y., Suzuki, T., Yamada, K., Kosemura, S., Yamamura, S., et al. (2001). A growth-inhibitory substance exuded from freeze-dried mesquite (Prosopis juliflora (Sw.) DC. leaves. Plant Growth Regulation, 33, 165–168.

    Article  CAS  Google Scholar 

  • Pasieczink, N. M. (2002). Prosopis juliflora and related arboreal species: A Monograph. Data base and extension manual, DFID, HDRA—the organic organization, Coventry

  • Pasiecznik, N. M., Felker, P., & Harris, P. J. C. (2001). The Prosopis juliflora–Prosopis pallida complex: A monograph. Coventry: HDRA.

    Google Scholar 

  • PCDP. (2005). Final baseline survey report of Gewane District, Afar Regional State, Pastoral Community Development Project, p. 56

  • Pejchar, L., & Mooney, H. A. (2009). Invasive species, ecosystem services and human wellbeing. Trends in Ecology & Evolution, 24, 497–504.

    Article  Google Scholar 

  • Pheloung, P. C., Williams, P. A., & Halloy, S. R. (1999). A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. Journal of Environmental Management, 57, 239–251.

    Article  Google Scholar 

  • Pimentel, D. (2001). Biological invasions: Economic and environmental costs of alien plant, animal and plant microbe species. Boca Raton: CRC.

    Google Scholar 

  • Pimentel, D., Lach, L., Zuniga, R., & Morrison, D. (2000). Environmental and economic costs of nonindigenous species in the United States. BioScience, 50, 53–65.

    Article  Google Scholar 

  • Sharma, I. K. (1981). Ecological and economic importance of Prosopis juliflora in the Indian Thar Desert. Journal of Taxonomy and Botany, 2, 245–248.

    Google Scholar 

  • Shiferaw, H., Teketay, D., Nemomissa, S., & Assefa, F. (2004). Some biological characteristics that foster the invasion of Prosopis juliflora (Sw.) DC. at Middle Awash Rift Valley Area, north-eastern Ethiopia. Journal of Arid Environments, 58, 135–154.

    Article  Google Scholar 

  • Stefan, A. (2005). Spread of the introduction tree Prosopis juliflora (Sw.) DC in the Lake Baringo area, Kenya. Instituionen for skoglig vegetationsekologi, Grafiska enheten, SLU, Umeå.

  • Thompson, M. (1996). Standard land cover classification scheme for remote sensing application in South Africa. South African Journal of Science, 92, 34–42.

    Google Scholar 

  • van Auken, O. W. (2000). Shrub invasion of North American semiarid grasslands. Annual Review of Ecology and Systematics, 31, 197–215.

    Article  Google Scholar 

  • Versfeld, D. B., Le Maitre, D. C., Chapman, R.A. (1998). Alien invading plants and water resources in South Africa: a preliminary assessment. Report No. TT 99/98, Water Research Commission, Pretoria.

  • Vitousek, P. M. (1990). Biological change and ecosystem process—Towards an integration of population biology and ecosystem, Vol.1. Main report. Addis Ababa, p. 120.

  • Warrage, M. O. A., & Al-Humaid, A. I. (1998). Allelopathic effects of Prosopis juliflora foliage on seed germination and seedling growth of Bermuda grass (Cyanodon dactylon). Journal of Arid Environment, 38, 237–243.

    Article  Google Scholar 

  • WAS (Worer Agrometeorology Section). (2008). Annual Climatic record at Melka-Worer Agricultural Research Center. Annual Report. Worer, Afar, Ethiopia

  • Witt, A. B. R. (2010). Biofuels and invasive species from an African perspective—A review. GCB Bioenergy, 2, 321–329.

    Article  Google Scholar 

  • Zimmerman, H. G. (1991). Biological control of mesquite, Prosopis spp. (Fabaceae), in South Africa. Agriculture, Ecosystems and Environment, 37, 175–186.

    Article  Google Scholar 

Download references


We thank FARM-Africa Project office at Amibara District for providing access to reports on P. juliflora control by Cooperatives. We thank also the district authorities and farmers in the study area for facilitating our fieldwork.

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. Haregeweyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haregeweyn, N., Tsunekawa, A., Tsubo, M. et al. Analysis of the invasion rate, impacts and control measures of Prosopis juliflora: a case study of Amibara District, Eastern Ethiopia. Environ Monit Assess 185, 7527–7542 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: