Skip to main content

The impact assessment of Diwali fireworks emissions on the air quality of a tropical urban site, Hyderabad, India, during three consecutive years

Abstract

Diwali is one of the largest festivals for Hindu religion which falls in the period October–November every year. During the festival days, extensive burning of firecrackers takes place, especially in the evening hours, constituting a significant source of aerosols, black carbon (BC), organics, and trace gases. The widespread use of sparklers was found to be associated with short-term air quality degradation events. The present study focuses on the influence of Diwali fireworks emissions on surface ozone (O3), nitrogen oxides (NO x ), and BC aerosol concentration over the tropical urban region of Hyderabad, India during three consecutive years (2009–2011). The trace gases are analyzed for pre-Diwali, Diwali, and post-Diwali days in order to reveal the festivity’s contribution to the ambient air quality over the city. A twofold to threefold increase is observed in O3, NO x , and BC concentrations during the festival period compared to control days for 2009–2011, which is mainly attributed to firecrackers burning. The high correlation coefficient (~0.74) between NO x and SO2 concentrations and higher SO2/NO x (S/N) index suggested air quality degradation due to firecrackers burning. Furthermore, the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation-derived aerosol subtyping map also confirmed the presence of smoke aerosols emitted from firecrackers burning over the region. Nevertheless, the concentration level of pollutants exhibited substantial decline over the region during the years 2010 and 2011 compared to 2009 ascribed to various awareness campaigns and increased cost of firecrackers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Agrawal, A., Upadhyay, V. K., & Sachdeva, K. (2011). Study of aerosol behavior on the basis of morphological characteristics during festival events in India. Atmospheric Environment, 45, 3640–3644.

    Article  CAS  Google Scholar 

  2. Aneja, P. V., Agarwal, A., Roelle, P. A., Phillips, B. S., Tong, Q., Watkins, N., et al. (2001). Measurements and analysis of criteria pollutants in New Delhi India. Environmental International, 27, 35–42.

    Article  CAS  Google Scholar 

  3. Attri, A. K., Kumar, U., & Jain, V. K. (2001). Microclimate: formation of O3 by fireworks. Nature, 411(6841), 1015.

    Article  CAS  Google Scholar 

  4. Babu, S. S., & Moorthy, K. K. (2001). Anthropogenic impact on aerosol black carbon mass concentration at a tropical coastal station: a case study. Current Science, 81, 1208–1214.

    CAS  Google Scholar 

  5. Badarinath, K. V. S., Kharol, S. K., Reddy, R. R., Gopal, K. R., Narasimhulu, K., Sankara, L., et al. (2009). Black carbon aerosol mass concentration variation in urban and rural environments of India—A case study. Atmospheric Science Letters, 10, 29–33.

    Article  Google Scholar 

  6. Badarinath, K. V. S., Sharma, A. R., Kaskaoutis, D. G., Kharol, S. K., & Kambezidis, H. D. (2010). Solar dimming over the tropical urban region of Hyderabad, India: effect of increased cloudiness and increased anthropogenic aerosols. Journal of Geophysical Research, 115, D21208.

    Article  Google Scholar 

  7. Barman, S. C., Singh, R., Negi, M. P. S., & Bhargava, S. K. (2008). Ambient air quality of Lucknow city (India) during use of fireworks on Diwali festival. Environment Monitoring and Assessment, 37, 495–504.

    Article  Google Scholar 

  8. Bergstrom, R. W., Russell, P. B., & Hignett, P. B. (2002). The wavelength dependence of black carbon particles: predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo. Journal of the Atmospheric Sciences, 59, 567–577.

    Article  Google Scholar 

  9. Cooke, W. F., Jennings, S. G., & Spain, T. G. (1997). Black carbon measurements at Mace Head, 1989–1996. Journal of Geophysical Research, 102(D21), 25339–25346. doi:10.1029/97JD01430.

    Article  CAS  Google Scholar 

  10. Das, S. K., & Jayaraman, A. (2011). Role of black carbon in aerosol properties and radiative forcing over western India during pre-monsoon period. Atmospheric Research, 102, 320–334.

    Article  CAS  Google Scholar 

  11. Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Silver Spring, MD: NOAA Air Resour. Lab. Retrieved from http://www.arl.noaa.gov/ready/hysplit4.html.

  12. Drewnick, F., Hings, S. S., Curtius, J., Eerdekens, G., & Williams, J. (2006). Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany. Atmospheric Environment, 40, 4316–4327.

    Article  CAS  Google Scholar 

  13. Gadhavi, H., & Jayaraman, A. (2010). Absorbing aerosols: contribution of biomass burning and implications for radiative forcing. Annales Geophysicae, 28, 103–111.

    Article  Google Scholar 

  14. Geng, F., Zhang, Q., Tie, X., Huang, M., Xincheng, M., Deng, Z., et al. (2009). Aircraft measurements of O3, NO x , CO, VOCs, and SO2 in the Yangtze River Delta region. Atmospheric Environment, 43, 584–593.

    Article  CAS  Google Scholar 

  15. Giglio, L., Kendall, J. D., & Mack, R. (2003). A multi-year active fire data set for the tropics derived from the TRMM VIRS. International Journal of Remote Sensing, 24, 4505–4525.

    Article  Google Scholar 

  16. Goyal, P., & Sidhartha. (2003). Present scenario of air quality in Delhi: a case study of CNG implementation. Atmospheric Environment, 37, 5423–5431.

    Article  Google Scholar 

  17. Guleria, R. P., Kuniyal, J. C., Rawat, P. S., Sharma, N. L., Thakur, H. K., Dhyani, P. P., et al. (2011). The assessment of aerosol optical properties over Mohal in the northwestern Indian Himalayas using satellite and ground-based measurements and an influence of aerosol transport on aerosol radiative forcing. Meteorology and Atmospheric Physics, 113, 153–169. doi:10.1007/s00703-011-0149-5.

    Article  Google Scholar 

  18. Kaskaoutis, D. G., Kharol, S. K., Sinha, P. R., Singh, R. P., Kambezidis, H. D., Sharma, A. R., et al. (2011). Extremely large anthropogenic aerosol component over the Bay of Bengal during winter season. Atmospheric Chemistry and Physics Discussions, 11, 7851–7907.

    Article  Google Scholar 

  19. Khaiwal, R., Mor, S., & Kaushik, C. P. (2003). Short-term variation in air quality associated with firework events: a case study. Journal of Environment Monitoring, 5, 260–264.

    Article  Google Scholar 

  20. Kirchstetter, T., Novakov, T., & Hobbs, P. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research, 109(D21). doi: 10.1029/2004JD004999. issn: 0148-0227.

    Google Scholar 

  21. Kulshrestha, U. C., Rao, T. N., Azhaguvel, S., & Kulshrestha, M. J. (2004). Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmospheric Environment, 38, 4421–4425.

    Article  CAS  Google Scholar 

  22. Lal, S., Sahu, L. K., Gupta, S., Srivastava, S., Modh, K. S., Venkataramani, S., et al. (2008). Emission characteristic of ozone related trace gases at a semi-urban site in the Indo-Gangetic plain using inter-correlations. Journal of Atmospheric Chemistry, 60, 189–204. doi:10.1007/s10874-008-9115-0.

    Article  CAS  Google Scholar 

  23. Lin, C. Y., Wang, Z., Chou, C. C. K., Chang, C. C., & Liu, S. C. (2007). A numerical study of an autumn high ozone episode over southwestern Taiwan. Atmospheric Environment, 41, 3684.

    Article  CAS  Google Scholar 

  24. Liu, D. Y., Rutherford, D., Kinsey, M., & Prather, K. A. (1997). Real-time monitoring of pyrotechnically derived aerosol particles in the troposphere. Analytical Chemistry, 69(10), 1808–1814.

    Article  CAS  Google Scholar 

  25. Liu, Z., Liu, D., Huang, J., Vaughan, M., Uno, I., Sugimoto, N., et al. (2008). Airborne dust distribution over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO Lidar observations. Atmospheric Chemistry and Physics, 8, 5045–5060. doi:10.5194/acp-8-5045-2008.

    Article  CAS  Google Scholar 

  26. Mandal, P., Prakash, M., & Bassin, J. K. (2011). Impact of Diwali celebrations on urban air and noise quality in Delhi City, India. Environmental Monitoring and Assessment, 184, 209–215.

    Article  Google Scholar 

  27. Nastos, P. T., Paliatsos, A. G., Anthracopoulos, M. B., Roma, E. S., & Kostas, N. (2010). Outdoor particulate matter and childhood asthma admissions in Athens, Greece: a time-series study. Environmental Health, 9, 45.

    Article  Google Scholar 

  28. Nirel, R., & Dayan, U. (2001). On the ratio of sulfur dioxide to nitrogen oxides as an indicator of air pollution sources. American Meteorological Society, 40, 1209–1222.

    Google Scholar 

  29. Nishanth, T., Praseed, K. M., Rathnakaran, K., Satheesh Kumar, M. K., Krishna, R. R., & Valsaraj, K. T. (2012). Atmospheric pollution in a semi-urban, coastal region in India following festival seasons. Atmospheric Environment, 47, 295–306.

    Article  CAS  Google Scholar 

  30. Omar, A. H., et al. (2009). The CALIPSO automated aerosol classification and Lidar ratio selection algorithm. Journal of Atmospheric and Oceanic Technology, 26, 1994–2014.

    Article  Google Scholar 

  31. Pope, C., Burnett, R., Thun, M., Calle, E., Krewski, D., Ito, K., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association, 287, 1132–1141.

    Article  CAS  Google Scholar 

  32. Powell, K. A., Hostetler, C. A., Vaughan, M. A., Lee, K., Trepte, C. R., Rogers, R. R., et al. (2009). CALIPSO Lidar calibration algorithms: Part I—Nighttime 532-nm parallel channel and 532-nm perpendicular channel. Journal of Atmospheric and Oceanic Technology, 26(10), 2015–2033.

    Article  Google Scholar 

  33. Racherla, P. N., & Adams, P. J. (2008). The response of surface O3 to climate change over the Eastern United States. Atmospheric Chemistry and Physics, 8, 871–885.

    Article  CAS  Google Scholar 

  34. Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119–2124. doi:10.1126/science.1064034.

    Article  CAS  Google Scholar 

  35. Samoli, E., Nastos, P. T., Paliatsos, A. G., Katsouyanni, K., & Priftis, K. N. (2011). Acute effects of air pollution on pediatric asthma exacerbation: evidence of association and effect modification. Environmental Research, 111, 418–424.

    Article  CAS  Google Scholar 

  36. Sarkar, S., Khillare, P. S., Darpa, J. S., Hasan, A., & Parween, M. (2010). Chemical speciation of respirable suspended particulate matter during a major firework festival in India. Journal of Hazardous Materials, 184, 321–330.

    Article  CAS  Google Scholar 

  37. Singh, D. P., Gadi, R., Mandal, T. K., Dixit, C. K., Singh, K., Saud, T., et al. (2010). Study of temporal variation in ambient air quality during Diwali festival in India. Environmental Monitoring and Assessment, 169, 1–13.

    Article  CAS  Google Scholar 

  38. Sreekanth, V., Niranjan, K., & Madhavan, B. L. (2007). Radiative forcing of black carbon over eastern India. Geophysical Research Letters, 34, L17818. doi:10.1029/2007GL030377.

    Article  Google Scholar 

  39. Swamy, Y. V., Venkanna, R., Nikhil, G. N., Chitanya, D. N. S. K., Sinha, P. R., Ramakrishna, M., et al. (2012). Impact of oxides of nitrogen, volatile organic carbons and black carbon emissions on ozone weekend/weekday variations at a semi arid urban site in Hyderabad. Aerosol and Air Quality Research, 12, 662–671.

    CAS  Google Scholar 

  40. Tasdemir, Y. C., Cindoruk, S. S., & Esen, F. (2005). Monitoring of criteria air pollutants in Bursa, Turkey. Environmental Monitoring and Assessment, 110, 227–241. doi:10.1007/s10661-005-7866-5.

    Article  CAS  Google Scholar 

  41. Thakur, B., Chakraborty, S., Debsarkar, A., Chakrabarty, S., & Srivastava, R. C. (2010). Air pollution from fireworks during festival of lights (Deepawali) in Howrah, India—A case study. Atmosfera, 23, 347–365.

    CAS  Google Scholar 

  42. Tripathi, S. N., Dey, S., Chandel, A., Srivastava, S., Singh, R. P., & Holben, B. N. (2005). Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Annales Geophysicae, 23, 1093–1101.

    Article  Google Scholar 

  43. Vecchi, R., Bernardoni, V., Cricchio, D., Alessandro, A. D., Fermo, P., Lucarelli, F., et al. (2008). The impact of fireworks on airborne particles. Atmospheric Environment, 42, 1121–1132.

    Article  CAS  Google Scholar 

  44. Wang, Y., Zhuang, G., Xu, C., & An, Z. (2007). The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmospheric Environment, 41, 417–431.

    Article  CAS  Google Scholar 

  45. Wang, Y., Hopke, P. K., Chalupa, D. C., & Utell, M. J. (2011a). Long-term study of urban ultrafine particles and other pollutants. Atmospheric Environment, 45(40), 7672–7680.

    Article  CAS  Google Scholar 

  46. Wang, Y., Hopke, P. K., Rattigan, O. V., & Xia, X. (2011b). Characterization of residential wood combustion particles using the two-wavelength aethalometer. Environmental Science and Technology, 45(17), 7387–7393.

    Article  CAS  Google Scholar 

  47. Wang, Y., Hopke, P. K., Rattigan, O. V., & Zhu, Y. (2011c). Characterization of ambient black carbon and wood burning particles in urban areas. Journal of Environmental Monitoring, 13, 1919–1926.

    Article  CAS  Google Scholar 

  48. Wang, Y., Hopke, P. K., & Utell, M. J. (2011d). Urban-scale spatial–temporal variability of black carbon and wood burning particles. Aerosol and Air Quality Research, 11, 473–481.

    CAS  Google Scholar 

  49. White, A. B., Christopher, J. S., Keane, A. N., Darby, L. S., Djalalova, I. V., Ruffieux, D. C., et al. (2006). A wind profiler trajectory tool for air quality transport applications. Journal of Geophysical Research, 111, D23S23. doi:10.1029/2006JD007475.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director of the Indian Institute of Chemical Technology for his encouragement and support. Fruitful discussions and constant support extended by Prof. Shyam Lal, Dr. C.B.S. Dutt, and Dr. P.P.N. Rao, the Programme Director during the course of the project, are highly acknowledged. The authors wishes to thank Dr. Dimitris G. Kaskaoutis and Dr. Shailesh Kumar Kharol for their support during the manuscript preparation. We also acknowledge ATCTM under the ISRO-GBP trace gas program for the financial support and TIFR-BF at Hyderabad for providing the laboratory space.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Venkata Swamy Yerramsetti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yerramsetti, V.S., Sharma, A.R., Gauravarapu Navlur, N. et al. The impact assessment of Diwali fireworks emissions on the air quality of a tropical urban site, Hyderabad, India, during three consecutive years. Environ Monit Assess 185, 7309–7325 (2013). https://doi.org/10.1007/s10661-013-3102-x

Download citation

Keywords

  • Diwali
  • Fireworks
  • Trace gases
  • Air quality
  • Pollution