Treatment efficacy of algae-based sewage treatment plants

Abstract

Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH4-N) removal efficiency of 18 %, nitrate (NO3-N) removal efficiency of 22 %, and nitrite (NO2-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abis, K. L., & Mara, D. D. (2003). Research on waste stabilisation ponds in the United Kingdom—initial results from pilot-scale facultative ponds. Water Science and Technology, 48(4), 1–7.

    CAS  Google Scholar 

  2. Amengual-Morro, C., Moya-Niell, G., & Martinez-Taberner, A. (2012). Phytoplankton as bioindicator for waste stabilization ponds. Journal of Environmental Management, 95, 71–76.

    Article  Google Scholar 

  3. Athayde, S. T. S. (2001). Algal and bacterial dynamics in waste stabilization ponds and wastewater storage and treatment reservoirs. PhD Thesis. University of Liverpool, Liverpool.

  4. Bernal, C. B., Vazquez, G., Quintal, I. B., & Bussy, A. L. (2008). Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water, Air, and Soil Pollution, 190(1–4), 259–270.

    Article  Google Scholar 

  5. Bolan, N. S., Wong, L., & Adriano, D. C. (2004). Nutrient removal from farm effluents. Bioresource Technology, 94(3), 251–260.

    Article  CAS  Google Scholar 

  6. Ceballos, B. S. O., Konig, A., Lomans, B., Athayde, A. B., & Pearson, H. W. (1995). Evaluation of a topical waste stabilisation pond system for irrigation. Water Science and Technology, 31(12), 267–273.

    Article  CAS  Google Scholar 

  7. Chen, G., Cao, X., Song, C., & Zhou, Y. (2010). Adverse effects of ammonia on nitrification process: the case of Chinese shallow freshwater lakes. Water, Air, and Soil Pollution, 210(1–4), 297–306.

    Article  CAS  Google Scholar 

  8. Colmenarejo, M. F., Rubio, A., Sanchez, E., Vicente, J., Gracia, M. G., & Bojra, R. (2006). Evaluation of municipal wastewater treatment plants with different technologies at Las-Rozas, Madrid (Spain). Journal of Environmental Management, 81(4), 399–404.

    Article  CAS  Google Scholar 

  9. CPCB, Central Pollution Control Board, http://www.cpcb.nic.in/Water_Quality_Criteria.php Accessed on 14 March 2012, 24 Aug 2012.

  10. Craggs, R., Sutherland, D., & Campbell, H. (2012a). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24(3), 329–337.

    Article  CAS  Google Scholar 

  11. Craggs R. J., Heubeck S., Lundquist T. J., & Benemann J. R. (2012b) Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology, 63:660–665.

    Google Scholar 

  12. Eckenfelder, W. (1989). Industrial water pollution control. New York: McGraw-Hill.

    Google Scholar 

  13. Metcalf & Eddy (2003). “Wastewater engineering: Treatment, disposal and reuse.” McGraw-Hill, 3rd Edition.

  14. El-Fadel, M., & Masood, M. (2001). Methane emission from wastewater management. Environmental Pollution, 114(2), 177–185.

    Article  CAS  Google Scholar 

  15. Faleschini, M., Esteves, J. L., & Valero, M. A. C. (2012). The effects of hydraulic and organic loadings on the performance of a full-scale facultative pond in a temperate climate region (Argentine Patagonia). Water, Air, and Soil Pollution, 223(5), 2483–2493.

    Article  CAS  Google Scholar 

  16. Goncalves, R. F., & de Oliveira, F. F. (1996). Improving the effluent quality of facultative stabilisation ponds by means of submerged aerated biofilters. Water Science and Technology, 33(3), 14.5–1.52.

    Article  Google Scholar 

  17. Green, B., Lundquist, T., & Oswald, W. J. (1995). Energetics of advanced integrated wastewater pond systems. Water Science and Technology, 31(12), 9–20.

    Article  CAS  Google Scholar 

  18. Hillebrand, H., Durselen, C. D., Kirschtel, D. B., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403–424.

    Article  Google Scholar 

  19. Jamwal, P., Mittal, A. K., & Mouchel, J. (2009). Efficiency evaluation of sewage treatment plants with different technologies in Delhi (India). Environmental Monitoring and Assessment, 153(1-4), 293–305.

    Article  CAS  Google Scholar 

  20. Jimenez, B. (2007). Helminth ova removal from wastewater for agriculture and aquaculture reuse. Water Science and Technology, 55(1–2), 485–493.

    Article  CAS  Google Scholar 

  21. Kalff, J. (2002). Limnology: Inland water ecosystem. Upper Siddle River: Prentice-Hall.

    Google Scholar 

  22. Karchanawong, S., & Sanjitt, J. (1995). Comparative study of domestic wastewater treatment efficiencies between facultative pond and water spinach pond. Water Science and Technology, 32(3), 263–270.

    Article  Google Scholar 

  23. Kayombo, S., Mbwette, T. S. A., Mayo, A. W., Katima, J. H. Y., & Jorgensen, S. E. (2000). Modelling diurnal variation of dissolved oxygen in waste stabilization ponds. Ecological Modelling, 127(1), 21–31.

    Article  CAS  Google Scholar 

  24. Kayombo, S., Mbwette, T. S. A., Mayo, A. W., Katima, J. H. Y., & Jorgensen, S. E. (2002). Diurnal cycles of variation of physical–chemical parameters in waste stabilization ponds. Ecological Engineering, 18(3), 287–291.

    Article  Google Scholar 

  25. Konig, A. (1984). Ecophysiological studies on some algae and bacteria of waste stabilization ponds. PhD Thesis. University of Liverpool, Liverpool.

  26. Konig, A., Pearson, H. W., & Silva, S. A. (1987). Ammonia toxicity to algal growth in waste stabilization ponds. Water Science and Technology, 19(12), 115–122.

    CAS  Google Scholar 

  27. Lai, P. C. C., & Lam, P. K. S. (1997). Major pathways for nitrogen removal in waste water stabilization ponds. Water, Air, and Soil Pollution, 94(1–2), 125–136.

    CAS  Google Scholar 

  28. Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2011a). Assessment of treatment capabilities of Varthur Lake, Bangalore, India. International Journal of Environment, Technology and Management, 14(1–4), 84–102.

    Article  CAS  Google Scholar 

  29. Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2011b). Role of macrophytes in sewage fed urban lake. Institute of Integrated Omics and Applied Biotechnology, 2(8), 1–9.

    CAS  Google Scholar 

  30. Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2011c). C:N ratio of sediments in a sewage fed urban lake. International Journal of Geology, 5(3), 86–92.

    Google Scholar 

  31. Mara, D. D. (2004). Domestic waste water treatment in developing countries. London: Earthscan.

    Google Scholar 

  32. Mara, D. D., Alabaster, G. P., Pearson, H. W., & Mills, S. W. (1992). Waste stabilization ponds. A design manual for Eastern Africa (pp. 27–29). Leeds: Lagoon Technology International.

    Google Scholar 

  33. Mara, D. D., Pearson, H. W., & Silva, S. (1996). Waste stabilization ponds: technology and applications. Water Science and Technology, 33, 1–262.

    Article  Google Scholar 

  34. Martin-Cereceda, M., Peerez-Uz, B., Serrano, S., & Guinea, A. (2002). Dynamics of protozoan and metazoan communities in a full scale wastewater treatment plant by rotating biological contactors. Microbiological Research, 156(3), 225–238.

    Article  Google Scholar 

  35. Mills, S.W. (1987). Wastewater treatment in waste stabilization ponds: Physiological studies on the microalgal and faecal coliform populations. PhD Thesis. University of Liverpool, Liverpool.

  36. Olukanni, D. O., & Ducoste, J. J. (2011). Optimization of waste stabilization pond design for developing nations using computational fluid dynamics. Ecological Engineering, 37(11), 1878–1888.

    Article  Google Scholar 

  37. Oswald, W. J. (1990). Advanced integrated wastewater pond systems. Proceedings of the 1990 ASCE Convention EE Div/ASCE. San Francisco, California.

  38. Pauer, J. J., & Auer, M. T. (2000). Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system. Water Research, 34(4), 1247–1254.

    Article  CAS  Google Scholar 

  39. Peak, J. G., Peak, M. J., & Ting, I. P. (1980). Heterotrophic carbon dioxide fixation products of Euglena. Effects of ammonium. Plant Physiology, 65(3), 566–568.

    Article  CAS  Google Scholar 

  40. Pearson, H. W., Mara, D. D., Mills, S. W., & Smallman, D. J. (1987). Factors determining algal populations in waste stabilization ponds and the influence of algae on pond performance. Water Science and Technology, 19(12), 131–140.

    CAS  Google Scholar 

  41. Prescott, G. W. (1973). The freshwater algae: The pictured key nature series. Dubuque: William C. Brown.

    Google Scholar 

  42. Prescott, G. W. (1982). Algae of the Western Great Lakes area (2nd ed.). Koenigstein: Otto Koeltz Science.

    Google Scholar 

  43. American Public Health Association (APHA) (1992). Standard methods for the examination of Water and Wastewater (18th ed.). Washington, D.C.

  44. Rinnhofer, B., & Smith, M. D. (2011). An analysis of cascade-aerated facultative waste stabilisation ponds in the United Kingdom. Water Environment Journal, 25(2), 290–295.

    Article  Google Scholar 

  45. Sah, L., Diederik, P. L., Rousseau, C. M. H., & Lens, P. N. L. (2011). 3D model for a secondary facultative pond. Ecological Modelling, 222(9), 1592–1603.

    Article  CAS  Google Scholar 

  46. Sah, L., Rousseau, D. P. L., & Hooijmans, C. M. (2012). Numerical modelling of waste stabilization ponds: where do we stand? Water, Air, and Soil Pollution, 223(6), 3155–3171.

    Article  CAS  Google Scholar 

  47. Strauss, E. A., & Lamberti, G. A. (2000). Regulation of nitrification in aquatic sediments by organic carbon. Limnology and Oceanography, 45(8), 1854–1859.

    Article  Google Scholar 

  48. Tadesse, I., Greenb, F. B., & Puhakkaa, J. A. (2004). Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond systems treating tannery effluent. Water Research, 38(3), 645–654.

    Article  CAS  Google Scholar 

  49. Valero, M. A. C., Read, L. F., Mara, D. D., Newton, R. J., Curtis, T. P., & Davenport, R. J. (2010). Nitrification–denitrification in WSP: a mechanism for permanent nitrogen removal in maturation ponds. Water Science and Technology, 61(5), 1137–1146.

    Article  CAS  Google Scholar 

  50. Veenstra, S., AI-Nozaily, F. A., & Alaerts, G. J. (1995). Purple non-sulfur bacteria and their influence on waste stabilization pond performance in Yemen Republic. Water Science and Technology, 31(12), 141–149.

    Article  CAS  Google Scholar 

  51. Veeresh, M., Veeresh, A. V., Huddar, B. D., & Hosetti, B. B. (2009). Dynamics of industrial waste stabilization pond treatment process. Environmental Monitoring and Assessment, 169(1–4), 55–65.

    Google Scholar 

  52. Veeresh, M., Veeresh, A., Huddar, B., & Hosetti, B. (2010). Dynamics of industrial waste stabilization pond treatment process. Environmental Monitoring and Assessment, 169(1-4), 55–65.

    Google Scholar 

  53. Weatherell, C. A., Elliott, D. J., Fallowfield, H. J., & Curtis, T. P. (2003). Variable photosynthetic characteristics in waste stabilization ponds. Water Science and Technology, 48(2), 219–226.

    CAS  Google Scholar 

  54. Xiong, W., Gao, C., Yan, D., Wu, C., & Wu, Q. (2010). Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology, 101(7), 2287–2293.

    Article  CAS  Google Scholar 

  55. Zimmo, O. R., van der Steen, N. P., & Gijzen, H. J. (2003). Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation stabilization ponds treating domestic wastewater. Water Research, 37(19), 4587–4594.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Ministry of Environment and Forests, Government of India and the Indian Institute of Science for financial and infrastructural support. We thank Raykar (IAS) for permitting us to study the wastewater system dynamics in greater detail. Subramanya and Vishwanath of the MCC provided us with valuable information to help us plan this study carefully. Kulkarni (Organic Solutions), Bhanuprasad (Bhageerath), and Vagesh (Fermenta Biotech) provided help and logistics during our detailed on-site sampling processes. Himansu, Yellappa, and Sudarshan helped us during our initial diurnal studies on the site.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. V. Ramachandra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mahapatra, D.M., Chanakya, H.N. & Ramachandra, T.V. Treatment efficacy of algae-based sewage treatment plants. Environ Monit Assess 185, 7145–7164 (2013). https://doi.org/10.1007/s10661-013-3090-x

Download citation

Keywords

  • Algae
  • Sewage treatment
  • Euglena
  • Facultative pond
  • Nutrient
  • Carbon capture
  • Biovolume