Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 9, pp 7145–7164 | Cite as

Treatment efficacy of algae-based sewage treatment plants

  • Durga Madhab Mahapatra
  • H. N. Chanakya
  • T. V. RamachandraEmail author
Article

Abstract

Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH4-N) removal efficiency of 18 %, nitrate (NO3-N) removal efficiency of 22 %, and nitrite (NO2-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates.

Keywords

Algae Sewage treatment Euglena Facultative pond Nutrient Carbon capture Biovolume 

Notes

Acknowledgments

We are grateful to the Ministry of Environment and Forests, Government of India and the Indian Institute of Science for financial and infrastructural support. We thank Raykar (IAS) for permitting us to study the wastewater system dynamics in greater detail. Subramanya and Vishwanath of the MCC provided us with valuable information to help us plan this study carefully. Kulkarni (Organic Solutions), Bhanuprasad (Bhageerath), and Vagesh (Fermenta Biotech) provided help and logistics during our detailed on-site sampling processes. Himansu, Yellappa, and Sudarshan helped us during our initial diurnal studies on the site.

References

  1. Abis, K. L., & Mara, D. D. (2003). Research on waste stabilisation ponds in the United Kingdom—initial results from pilot-scale facultative ponds. Water Science and Technology, 48(4), 1–7.Google Scholar
  2. Amengual-Morro, C., Moya-Niell, G., & Martinez-Taberner, A. (2012). Phytoplankton as bioindicator for waste stabilization ponds. Journal of Environmental Management, 95, 71–76.CrossRefGoogle Scholar
  3. Athayde, S. T. S. (2001). Algal and bacterial dynamics in waste stabilization ponds and wastewater storage and treatment reservoirs. PhD Thesis. University of Liverpool, Liverpool.Google Scholar
  4. Bernal, C. B., Vazquez, G., Quintal, I. B., & Bussy, A. L. (2008). Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water, Air, and Soil Pollution, 190(1–4), 259–270.CrossRefGoogle Scholar
  5. Bolan, N. S., Wong, L., & Adriano, D. C. (2004). Nutrient removal from farm effluents. Bioresource Technology, 94(3), 251–260.CrossRefGoogle Scholar
  6. Ceballos, B. S. O., Konig, A., Lomans, B., Athayde, A. B., & Pearson, H. W. (1995). Evaluation of a topical waste stabilisation pond system for irrigation. Water Science and Technology, 31(12), 267–273.CrossRefGoogle Scholar
  7. Chen, G., Cao, X., Song, C., & Zhou, Y. (2010). Adverse effects of ammonia on nitrification process: the case of Chinese shallow freshwater lakes. Water, Air, and Soil Pollution, 210(1–4), 297–306.CrossRefGoogle Scholar
  8. Colmenarejo, M. F., Rubio, A., Sanchez, E., Vicente, J., Gracia, M. G., & Bojra, R. (2006). Evaluation of municipal wastewater treatment plants with different technologies at Las-Rozas, Madrid (Spain). Journal of Environmental Management, 81(4), 399–404.CrossRefGoogle Scholar
  9. CPCB, Central Pollution Control Board, http://www.cpcb.nic.in/Water_Quality_Criteria.php Accessed on 14 March 2012, 24 Aug 2012.
  10. Craggs, R., Sutherland, D., & Campbell, H. (2012a). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24(3), 329–337.CrossRefGoogle Scholar
  11. Craggs R. J., Heubeck S., Lundquist T. J., & Benemann J. R. (2012b) Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology, 63:660–665.Google Scholar
  12. Eckenfelder, W. (1989). Industrial water pollution control. New York: McGraw-Hill.Google Scholar
  13. Metcalf & Eddy (2003). “Wastewater engineering: Treatment, disposal and reuse.” McGraw-Hill, 3rd Edition.Google Scholar
  14. El-Fadel, M., & Masood, M. (2001). Methane emission from wastewater management. Environmental Pollution, 114(2), 177–185.CrossRefGoogle Scholar
  15. Faleschini, M., Esteves, J. L., & Valero, M. A. C. (2012). The effects of hydraulic and organic loadings on the performance of a full-scale facultative pond in a temperate climate region (Argentine Patagonia). Water, Air, and Soil Pollution, 223(5), 2483–2493.CrossRefGoogle Scholar
  16. Goncalves, R. F., & de Oliveira, F. F. (1996). Improving the effluent quality of facultative stabilisation ponds by means of submerged aerated biofilters. Water Science and Technology, 33(3), 14.5–1.52.CrossRefGoogle Scholar
  17. Green, B., Lundquist, T., & Oswald, W. J. (1995). Energetics of advanced integrated wastewater pond systems. Water Science and Technology, 31(12), 9–20.CrossRefGoogle Scholar
  18. Hillebrand, H., Durselen, C. D., Kirschtel, D. B., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403–424.CrossRefGoogle Scholar
  19. Jamwal, P., Mittal, A. K., & Mouchel, J. (2009). Efficiency evaluation of sewage treatment plants with different technologies in Delhi (India). Environmental Monitoring and Assessment, 153(1-4), 293–305.CrossRefGoogle Scholar
  20. Jimenez, B. (2007). Helminth ova removal from wastewater for agriculture and aquaculture reuse. Water Science and Technology, 55(1–2), 485–493.CrossRefGoogle Scholar
  21. Kalff, J. (2002). Limnology: Inland water ecosystem. Upper Siddle River: Prentice-Hall.Google Scholar
  22. Karchanawong, S., & Sanjitt, J. (1995). Comparative study of domestic wastewater treatment efficiencies between facultative pond and water spinach pond. Water Science and Technology, 32(3), 263–270.CrossRefGoogle Scholar
  23. Kayombo, S., Mbwette, T. S. A., Mayo, A. W., Katima, J. H. Y., & Jorgensen, S. E. (2000). Modelling diurnal variation of dissolved oxygen in waste stabilization ponds. Ecological Modelling, 127(1), 21–31.CrossRefGoogle Scholar
  24. Kayombo, S., Mbwette, T. S. A., Mayo, A. W., Katima, J. H. Y., & Jorgensen, S. E. (2002). Diurnal cycles of variation of physical–chemical parameters in waste stabilization ponds. Ecological Engineering, 18(3), 287–291.CrossRefGoogle Scholar
  25. Konig, A. (1984). Ecophysiological studies on some algae and bacteria of waste stabilization ponds. PhD Thesis. University of Liverpool, Liverpool.Google Scholar
  26. Konig, A., Pearson, H. W., & Silva, S. A. (1987). Ammonia toxicity to algal growth in waste stabilization ponds. Water Science and Technology, 19(12), 115–122.Google Scholar
  27. Lai, P. C. C., & Lam, P. K. S. (1997). Major pathways for nitrogen removal in waste water stabilization ponds. Water, Air, and Soil Pollution, 94(1–2), 125–136.Google Scholar
  28. Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2011a). Assessment of treatment capabilities of Varthur Lake, Bangalore, India. International Journal of Environment, Technology and Management, 14(1–4), 84–102.CrossRefGoogle Scholar
  29. Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2011b). Role of macrophytes in sewage fed urban lake. Institute of Integrated Omics and Applied Biotechnology, 2(8), 1–9.Google Scholar
  30. Mahapatra, D. M., Chanakya, H. N., & Ramachandra, T. V. (2011c). C:N ratio of sediments in a sewage fed urban lake. International Journal of Geology, 5(3), 86–92.Google Scholar
  31. Mara, D. D. (2004). Domestic waste water treatment in developing countries. London: Earthscan.Google Scholar
  32. Mara, D. D., Alabaster, G. P., Pearson, H. W., & Mills, S. W. (1992). Waste stabilization ponds. A design manual for Eastern Africa (pp. 27–29). Leeds: Lagoon Technology International.Google Scholar
  33. Mara, D. D., Pearson, H. W., & Silva, S. (1996). Waste stabilization ponds: technology and applications. Water Science and Technology, 33, 1–262.CrossRefGoogle Scholar
  34. Martin-Cereceda, M., Peerez-Uz, B., Serrano, S., & Guinea, A. (2002). Dynamics of protozoan and metazoan communities in a full scale wastewater treatment plant by rotating biological contactors. Microbiological Research, 156(3), 225–238.CrossRefGoogle Scholar
  35. Mills, S.W. (1987). Wastewater treatment in waste stabilization ponds: Physiological studies on the microalgal and faecal coliform populations. PhD Thesis. University of Liverpool, Liverpool.Google Scholar
  36. Olukanni, D. O., & Ducoste, J. J. (2011). Optimization of waste stabilization pond design for developing nations using computational fluid dynamics. Ecological Engineering, 37(11), 1878–1888.CrossRefGoogle Scholar
  37. Oswald, W. J. (1990). Advanced integrated wastewater pond systems. Proceedings of the 1990 ASCE Convention EE Div/ASCE. San Francisco, California.Google Scholar
  38. Pauer, J. J., & Auer, M. T. (2000). Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system. Water Research, 34(4), 1247–1254.CrossRefGoogle Scholar
  39. Peak, J. G., Peak, M. J., & Ting, I. P. (1980). Heterotrophic carbon dioxide fixation products of Euglena. Effects of ammonium. Plant Physiology, 65(3), 566–568.CrossRefGoogle Scholar
  40. Pearson, H. W., Mara, D. D., Mills, S. W., & Smallman, D. J. (1987). Factors determining algal populations in waste stabilization ponds and the influence of algae on pond performance. Water Science and Technology, 19(12), 131–140.Google Scholar
  41. Prescott, G. W. (1973). The freshwater algae: The pictured key nature series. Dubuque: William C. Brown.Google Scholar
  42. Prescott, G. W. (1982). Algae of the Western Great Lakes area (2nd ed.). Koenigstein: Otto Koeltz Science.Google Scholar
  43. American Public Health Association (APHA) (1992). Standard methods for the examination of Water and Wastewater (18th ed.). Washington, D.C.Google Scholar
  44. Rinnhofer, B., & Smith, M. D. (2011). An analysis of cascade-aerated facultative waste stabilisation ponds in the United Kingdom. Water Environment Journal, 25(2), 290–295.CrossRefGoogle Scholar
  45. Sah, L., Diederik, P. L., Rousseau, C. M. H., & Lens, P. N. L. (2011). 3D model for a secondary facultative pond. Ecological Modelling, 222(9), 1592–1603.CrossRefGoogle Scholar
  46. Sah, L., Rousseau, D. P. L., & Hooijmans, C. M. (2012). Numerical modelling of waste stabilization ponds: where do we stand? Water, Air, and Soil Pollution, 223(6), 3155–3171.CrossRefGoogle Scholar
  47. Strauss, E. A., & Lamberti, G. A. (2000). Regulation of nitrification in aquatic sediments by organic carbon. Limnology and Oceanography, 45(8), 1854–1859.CrossRefGoogle Scholar
  48. Tadesse, I., Greenb, F. B., & Puhakkaa, J. A. (2004). Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond systems treating tannery effluent. Water Research, 38(3), 645–654.CrossRefGoogle Scholar
  49. Valero, M. A. C., Read, L. F., Mara, D. D., Newton, R. J., Curtis, T. P., & Davenport, R. J. (2010). Nitrification–denitrification in WSP: a mechanism for permanent nitrogen removal in maturation ponds. Water Science and Technology, 61(5), 1137–1146.CrossRefGoogle Scholar
  50. Veenstra, S., AI-Nozaily, F. A., & Alaerts, G. J. (1995). Purple non-sulfur bacteria and their influence on waste stabilization pond performance in Yemen Republic. Water Science and Technology, 31(12), 141–149.CrossRefGoogle Scholar
  51. Veeresh, M., Veeresh, A. V., Huddar, B. D., & Hosetti, B. B. (2009). Dynamics of industrial waste stabilization pond treatment process. Environmental Monitoring and Assessment, 169(1–4), 55–65.Google Scholar
  52. Veeresh, M., Veeresh, A., Huddar, B., & Hosetti, B. (2010). Dynamics of industrial waste stabilization pond treatment process. Environmental Monitoring and Assessment, 169(1-4), 55–65.Google Scholar
  53. Weatherell, C. A., Elliott, D. J., Fallowfield, H. J., & Curtis, T. P. (2003). Variable photosynthetic characteristics in waste stabilization ponds. Water Science and Technology, 48(2), 219–226.Google Scholar
  54. Xiong, W., Gao, C., Yan, D., Wu, C., & Wu, Q. (2010). Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology, 101(7), 2287–2293.CrossRefGoogle Scholar
  55. Zimmo, O. R., van der Steen, N. P., & Gijzen, H. J. (2003). Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation stabilization ponds treating domestic wastewater. Water Research, 37(19), 4587–4594.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Durga Madhab Mahapatra
    • 1
    • 2
  • H. N. Chanakya
    • 2
    • 3
  • T. V. Ramachandra
    • 1
    • 2
    • 3
    Email author
  1. 1.Energy and Wetlands Research Group, Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
  2. 2.Centre for Sustainable Technologies (CST)Indian Institute of ScienceBangaloreIndia
  3. 3.Centre for Infrastructure, Sustainable Transport and Urban Planning (CiSTUP)Indian Institute of ScienceBangaloreIndia

Personalised recommendations