Skip to main content

Advertisement

Log in

A new nanosilver-based spectrophotometric method for monitoring Eriochrome black T in river water

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this paper, a new spectrophotometric method is reported for the determination of nanomolar levels of Eriochrome black T in environmental samples. The method is based on the catalytic effect of silver nanoparticles on the oxidation of Eriochrome black T by hexacyanoferrate (III) in acetate–acetic acid medium and at 25 °C. The absorbance is measured at 512 nm with the fixed-time method. It relies on the linear relationship between the absorbance difference (∆A) and Eriochrome black T amounts in the range of 40–1,250 nM. Under optimum conditions, the sensitivity of the proposed method, i.e., the detection limit corresponding to 80 s, is about 25 nM. The method is featured with good accuracy and reproducibility for Eriochrome black T determination in river water samples without any pre-concentration and separation step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barka, N., Assabbane, A., Nounah, A., & Aît Ichou, Y. (2008). Photocatalytic degradation of Eriochrome black T in aqueous solution by TiO2-coated non-woven fibres. Journal of Hazardous Materials, 152, 1054–1059.

    Article  CAS  Google Scholar 

  • Díaz-González, M., Fernández-Sánchez, C., & Costa-García, A. (2002). Comparative voltammetric behavior of Eriochrome black T at screen-printed carbon electrode. Electroanalysis, 14, 665–670.

    Article  Google Scholar 

  • Dong, C., Zhang, J., & Zhou, D.-Z. (2010). Spectroscopic studies of the interaction of silver nanoparticles with methylene blue. J Measurement Sci and Instrument, 1, 61–64.

    CAS  Google Scholar 

  • Fernández-Sánchez, C., & Costa-García, A. (2000). Voltammetric studies of indigo adsorbed on pre-treated carbon paste electrodes. Electrochem Communi, 2, 776–781.

    Article  Google Scholar 

  • Huang, H., & Yang, X. (2004). Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohyd Res, 339, 2627–2631.

    Article  CAS  Google Scholar 

  • Ishikawa Oishi, F. M., Kimura, K., Yasui, A., & Saito, K. (2004). Determination of synthetic ground water dyes in ground water by capillary electrophoresis. J Ground water Hygienic Society of Japan, 45, 150–155.

    Article  Google Scholar 

  • Jana, N. R., Sau, T. K., & Pal, T. (1999). Growing small silver particle as redox catalyst. The Journal of Physical Chemistry. B, 103, 115.

    Article  CAS  Google Scholar 

  • Jiang, Z.-J., Liu, C.-Y., & Sun, L.-W. (2005). Catalytic properties of silver nanoparticles supported on silica spheres. The Journal of Physical Chemistry. B, 109, 1730–1735.

    Article  CAS  Google Scholar 

  • Kapor, M. A., Yamanaka, H., Carneiro, P. A., & Zanoni, M. V. B. (2001). Eletroanálise de corantes alimentícios: determinação de índigo carmime tartrazina. Eclet Quím, 26, 53–68.

    Article  CAS  Google Scholar 

  • Mo, S., Na, J., Mo, H., & Chen, L. (1992). Voltammetric determination of Eriochrome black T and amaranth on a silver-based mercury film electrode. Analytical Letters, 25, 899–909.

    Article  CAS  Google Scholar 

  • Nakamura, T., Hirata, M., Kawasaki, N., Tanada, S., Tamura, T., & Nakahori, Y. (2003). Decolorization of Eriochrome black T by charcoal from extracted residue of coffee beans. J Environ Sci and Health, Part A, 38, 555–562.

    Article  Google Scholar 

  • Nakamura, T., Kawasaki, N., Tanada, S., Tamura, T., & Shimizu, Y. (2005). Eriochrome black T removal by charcoal from rice bran as an agricultural by-product. Toxicological and Environmental Chemistry, 87, 321–327.

    Article  CAS  Google Scholar 

  • Pal, T., Sau, T. K., & Jana, N. R. (1997). Reversible formation and dissolution of silver nanoparticles in aqueous surfactant media. Langmuir, 13, 1481–1485.

    Article  CAS  Google Scholar 

  • Pal, T., Sau, T. K., & Jana, N. R. (1998). Silver hydrosol, organosol, and reverse micelle-stabilized sol—a comparative study. Journal of Colloid and Interface Science, 202, 30.

    Article  CAS  Google Scholar 

  • Pârvulescu, V. I., Cojocaru, B., Pârvulescu, V., Richards, R., Li, Z., Cadigan, C., et al. (2010). Sol–gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. J Catalysis, 272, 92–100.

    Article  Google Scholar 

  • Roberts, E. L., Burguieres, S., & Warner, I. M. (1998). Spectroscopic studies of Eriochrome black T dye in organized media. Appl Spect, 52, 1305–1313.

    Article  CAS  Google Scholar 

  • Sun, Y., & Xia, Y. (2002). Large-scale synthesis of silver nanowires through a soft, self-seeding, polyol process. Advanced Materials, 14, 833–837.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farmany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahraei, R., Farmany, A., Mortazavi, S.S. et al. A new nanosilver-based spectrophotometric method for monitoring Eriochrome black T in river water. Environ Monit Assess 185, 7037–7041 (2013). https://doi.org/10.1007/s10661-013-3083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3083-9

Keywords