Skip to main content

Advertisement

Log in

GIS-based pollution hazard mapping and assessment framework of shallow lakes: southeastern Pampean lakes (Argentina) as a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aller, L., Bennett, T., Lehr, J., & Petty, R. (1987). DRASTIC: a standardized system for evaluating groundwater pollution. Doc. Environmental Protection Agency Report 600/2-85/018. Washington: US EPA.

    Google Scholar 

  • American Public Health Association, APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. (1976). A land use and land cover classification system for use with remote-sensor data: U.S. Geol. Survey no. 964. Washington: United States Government Printing Office.

    Google Scholar 

  • Baccaro, K., Degorgue, M., Lucca, M., Picone, L., Zamuner, E., & Andreoli, Y. (2006). Calidad del agua para consumo humano y riego en muestras del cinturón hortícola de Mar del Plata. RIA, 35(3), 95–110.

    Google Scholar 

  • Bahar, M. M., Ohmori, H., & Yamamuro, M. (2008). Relationship between river water quality and land use in a small river basin running through urbanizing area of Central Japan. Limnology, 9, 19–26.

    Article  CAS  Google Scholar 

  • Beltrame, M. O., De Marco, S. E. G., & Marcovecchio, J. E. (2008). Cadmium and zinc in Mar Chiquita Coastal Lagoon (Argentina): salinity effects on lethal toxicity in juveniles of the burrowing crab Chasmagnathus granulata. Archives of Environmental Contamination and Toxicology, 55, 78–85.

    Article  CAS  Google Scholar 

  • Bennett, H. H. (2001). Soil conservation for sustainable agriculture. New Delhi: Agrobios.

    Google Scholar 

  • Borrelli, N., Osterrieth, M., Romanelli, A., Alvarez, M. F., Cionchi, J. L., & Massone, H. (2011). Biogenic silica in wetlands and their relationship with soil and groundwater biogeochemistry in the Southeastern of Buenos Aires Province, Argentina. Environmental Earth Sciences, 65, 469–480.

    Article  Google Scholar 

  • Burkert, U., Ginzel, G., Babenzien, H. D., & Koschel, R. (2004). The hydrogeology of a catchment area and an artificially divided dystrophic lake—consequences for the limnology of Lake Fuchskuhle. Biogeochemistry, 71, 225–246.

    Article  CAS  Google Scholar 

  • Cabrera Silva, S. (1983). Estimación de la concentración de clorofila a y feopigmentos. Una revisión metodológica. In: N. Bahamonde & S. Cabrera Silva (Eds). Embalses, fotosíntesis y productividad primaria (pp 189-200). Programa sobre el hombre y la biósfera, UNESCO. Campo de acción Nº 5. Efectos ecológicos de las actividades humanas sobre el valor y los recursos de los lagos, pantanos, ríos, deltas, estuarios y zonas costeras. Chile: Universidad de Chile.

  • Cardoni, D. A., Favero, M., & Isaach, J. P. (2008). Recreational activities affecting the habitat use by birds in Pampa’s wetlands, Argentina: implications for waterbird conservation. Biological Conservation, 14, 797–806.

    Article  Google Scholar 

  • Collier, K. J., & Quinn, J. M. (2003). Land- use influences macroinvertebrates community response following a pulse disturbance. Freshwater Biology, 48, 1462–1481.

    Article  Google Scholar 

  • Eimers J. L., Weaver J. C., Terziotti S., Midgette R. W. (2000). Methods of rating unsaturated zone and watershed characteristics of public water supplies in North Carolina.U.S. Geological Survey, Water-Resources Investigations. http://water.usgs.gov/pubs/wri/wri994283. Accessed 13 June 2012.

  • Environment System Research Institute, ESRI (2007) http://www.esri.com. Accessed 12 March 2012.

  • Esquius, K. S., & Escalante, A. H. (2012). Periphyton assemblages and their relationships with environmental variables in a eutrophic shallow lake from Pampa Plain, Argentina. Pan-American Journal of Aquatic Sciences, 7(2), 57–72.

    Google Scholar 

  • Esquius, K. S., Escalante, A. H., & Solari, L. C. (2010). Summer periphyton community in two streams of the Pampa Plain, Argentina. Gestión y Ambiente, 13, 87–96.

    Google Scholar 

  • European Environmental Agency, EEA (2000). Coordination of Information on the Environment, CORINE Land Cover Technical Guide. http://www.eea.europa.eu/publications/COR0-landcover. Accessed 09 April 2012.

  • Fernandes, V. O., & Esteves, F. A. (2003). The use of indices for evaluating the periphytic community in two kinds of substrate in Imboassica Lagoon, Rio de Janeiro, Brazil. Brazilian Journal of Biology, 63, 233–243.

    Article  CAS  Google Scholar 

  • Fernández Aláez, C., Fernández Aláez, M., Trigal Domínguez, C., & Santos, B. L. (2006). Hydrochemistry of northwest Spain ponds and its relationships to groundwaters. Limnetica, 25, 433–452.

    Google Scholar 

  • Fernández Cirelli, A., & Miretzky, P. (2004). Ionic relations: a tool for studying hydrogeochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quaternary International, 114, 113–121.

    Article  Google Scholar 

  • Foster, S., Hirata, R., Gomez, D., D’ Elia, M., & Paris, M. (2002). Groundwater quality protection: a guide for water service companies, municipal authorities and environment agencies. Washington: The World Bank.

    Book  Google Scholar 

  • Gómez, N., & Licursi, M. (2001). The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology, 35, 173–181.

    Article  Google Scholar 

  • Grosman, F. (2008). Espejos en la llanura. Nuestras lagunas de la región pampeana. Tandil: Ed. Universidad Nacional del Centro de la Provincia de Buenos Aires.

    Google Scholar 

  • Harum T., Saccon P., Calasans N. (2004). Water resources, vulnerability assessment and quality of water in Cachoeira catchment. http://www.uatla.pt/ecoman/. Accessed 18 February 2012.

  • INTA. (2008). Geospatial Datebase of Argentina. http://geointa.inta.gov.ar/. Accessed 09 April 2012.

  • Iriondo, M. (1989). The Quaternary lakes of Argentina. Paleography, Paleoclimatology, Paleoecology, 70, 81–88.

    Article  Google Scholar 

  • Izaguirre, I., & Vinocur, A. (1994). Algal assemblages from shallow lakes of the Salado River Basin (Argentina). Hydrobiology, 289, 57–64.

    Article  Google Scholar 

  • Jarrige, R., & Béranger, C. (1992). Beef cattle production. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Jeffrey, S. W., Mantoura, R. F. C., & Wright, S. W. (1997). Phytoplankton pigments in oceanography. Paris: UNESCO Publishing.

    Google Scholar 

  • Jenks, G. (1977). Optimal data classification for choropleth maps. Department of Geography occasional paper no. 2. Kansas: University of Kansas, Lawrence.

    Google Scholar 

  • Jenks, G., & Caspall, F. (1971). Error on choropleth maps: definition, measurement, and reduction. Annals of the Association of American Geographers, 61, 217–244.

    Article  Google Scholar 

  • Joniak, T., Kuczynska-Kippen, N., & Nagengast, B. (2007). The role of aquatic macrophytes in microhabitat transformation of physical-chemical features of small water bodies. Hydrobiology, 584, 101–109.

    Article  CAS  Google Scholar 

  • Josens, M. L., Pretelli, M. G., & Escalante, A. H. (2009). Censos de aves acuáticas en sus colonias reproductivas en lagunas del sudeste de la Provincia de Buenos Aires. Hornero, 24, 7–12.

    Google Scholar 

  • Lakatos, G., Kiss, M. K., Kiss, M., & Juhász, P. (1999). Composition and structure of periphyton in Kis-Balaton Water Protection system. International Review of Hydrobiology, 84, 1–4.

    Google Scholar 

  • Leandrini, J. A., & Rodrigues, L. (2008). Temporal variation of periphyton biomass in semilotic environments of the upper Paraná River floodplain. Acta Limnologica Brasiliensia, 20, 21–28.

    Google Scholar 

  • Lima, M. L., Zelaya, K., & Massone, H. E. (2011). Groundwater vulnerability assessment combining the DRASTIC and DYNA-CLUE model in the Argentine Pampas. Environmental Management, 47(5), 828–839.

    Article  Google Scholar 

  • Maceira, N. O., Zelaya, D. K., Celemín, J. P., & Fernández, O. N. (2005). Uso de la tierra y elementos para el mejoramiento y la sustentabilidad. Reserva de la Biosfera de Mar Chiquita. Provincia de Buenos Aires. Evaluación Preliminar. Balcarce: Instituto Nacional de Tecnología Agropecuaria (INTA). Programa El Hombre y la Biosfera-MAB/UNESCO.

    Google Scholar 

  • Margat, J. (1968). Groundwater vulnerability to contamination. Orleans: BRGM.

    Google Scholar 

  • Massone, H. E. (2011). Lagunas de Los Padres y La Brava: un recurso natural y social para cuidar y compartir. Mar del Plata: Universidad Nacional de Mar del Plata.

    Google Scholar 

  • Massone, H., Quiroz Londoño, O. M., & Martinez, D. (2010). Enhanced groundwater vulnerability assessment in geological homogenous areas a case study from the argentine pampas. Hydrogeology Journal, 18, 371–379.

    Article  Google Scholar 

  • Miglioranza, K. S. B., Aizpún de Moreno, J. E., Moreno, V. J., Osterrieth, M., & Escalante, A. H. (1998). Fate of organochlorine pesticides in soils and terrestrial biota of Los Padres pond watershed, Argentina. Environmental Pollution, 100, 1–9.

    Google Scholar 

  • Miglioranza, K. S. B., Aizpún de Moreno, J. E., & Moreno, V. J. (2004). Organochlorine pesticides sequestered in the aquatic macrophyte Schoenoplectus californicus from a shallow lake in Argentina. Water Research, 38, 1765–1772.

    Article  CAS  Google Scholar 

  • Murray, A., & Shyy, T. (2000). Integrating attribute and space characteristics in choropleth display and spatial data mining. International Journal of Geographical Information Science, 14(7), 649–667.

    Article  Google Scholar 

  • New Mexico Environment Department (NMED). (2000). State of New Mexico, Source Water Assessment and Protection Program. http://www.nmenv.state.nm.us/dwb/Documents/SWAPP_2000.pdf. Accessed 25 March 2012.

  • Ometo, J. P. H. B., Martinelli, L. A., Ballester, M. V., Gessner, A., Krusche, A. V., Victoria, R. L., & Williams, M. (2000). Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba river basin, south- east Brazil. Freshwater Biology, 44, 327–337.

    Article  CAS  Google Scholar 

  • Ondarza P. M., Miglioranza K. S. B., Gonzalez M., Escalante A. H., Aizpún J. E. & Moreno V. J. (2012). Dinámica de Compuestos Orgánicos Persistentes en la laguna Nahuel Rucá, cuenca de la Reserva de Biosfera Mar Chiquita, Buenos Aires. II RAGSU (Reunión Argentina de Geoquímica de la Superficie), 153-156.

  • Pizarro, H., & Alemanni, M. E. (2005). Variables físico-químicas del agua y su influencia en la biomasa del perifiton en un tramo inferior del Río Luján, Provincia de Buenos Aires. Ecología Austral, 15, 73–88.

    Google Scholar 

  • Pizzolon, L., Tracanna, B., Prósperi, C., & Guerrero, J. (1999). Cyanobacterial blooms in Argentinean inland waters. Lakes and Reservoirs: Research and Management, 4, 101–105.

    Article  Google Scholar 

  • Price, J. S., & Maloney, D. A. (1994). Hydrology of a patterned bog–fen complex in southeastern Labrador, Canada. Nordic Hydrology, 25, 313–330.

    Google Scholar 

  • Quirós, R., & Drago, E. (1999). The environmental state of the Argentinean lakes: An overview. Lakes and Reservoirs: Research and Management, 4, 55–64.

    Article  Google Scholar 

  • Quirós, R., Rennella, A., Boveri, M., Rosso, J. J., & Sosnovsky, A. (2002). Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecología Austral, 12, 175–185.

    Google Scholar 

  • Quirós, R., Rosso, J. J., Rennella, A., Sosnovsky, A., & Boverie, M. (2002). Análisis del estado trófico de las lagunas pampeanas (Argentina). Interciencia, 24(11), 584–591.

    Google Scholar 

  • Ravi Shankar, M. N., & Mohan, G. (2006). Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane District, Western Deccan Volcanic Province of India. Environmental Geology, 49, 909–998.

    Google Scholar 

  • Shivoga, W. A., Muchiri, M., Kibichi, S., Odanga, J., Miller, S. N., Baldyga, T. J., Enanga, E. M., & Gichaba, M. C. (2007). Influences of land use/cover on water quality in the upper and middle of River Njoro. Kenya Lakes & Reservoirs: Research and Management, 12, 97–105.

    Article  CAS  Google Scholar 

  • Slocum, T. A. (1999). Thematic cartography and visualization. Upper Saddle River (New Jersey). New York: Prentice-Hall.

    Google Scholar 

  • Stutz, S., & Prieto, A. R. (2003). Modern pollen and vegetation relationships in Mar Chiquita coastal lagoon area, southeastern Pampa grasslands, Argentina. Review of Palaeobotany and Palynology, 126, 183–195.

    Article  Google Scholar 

  • Vrba J. & Zaporozec A. (1994). Guidebook on mapping groundwater vulnerability. IAH International Contributions to Hydrogeology, 16, 131; Hannover/FRG.

  • Yanhui, L., Liang, T., Jing, W., & Xianqiu, L. (2012). Study on water resource vulnerability evaluation of Hani Terrace Core Area in Yuanyang. Yunnan. Procedia Earth and Planetary Science, 5, 268–274.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of the Universidad Nacional de Mar del Plata through ARQ 168/07, EXA 409/08, EXA 388/08, and EXA 494/10. The authors are also indebted to Mrs. A. Licciardo for the technical assistance and Mr. G. Bernava for the chemical analysis. Two of the authors (AR and KSE) are indebted to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for the fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Romanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanelli, A., Esquius, K.S., Massone, H.E. et al. GIS-based pollution hazard mapping and assessment framework of shallow lakes: southeastern Pampean lakes (Argentina) as a case study. Environ Monit Assess 185, 6943–6961 (2013). https://doi.org/10.1007/s10661-013-3077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3077-7

Keywords

Navigation