Environmental Monitoring and Assessment

, Volume 185, Issue 8, pp 6867–6879 | Cite as

Application of zirconium–iridium permanent modifier for the simultaneous determination of lead, cadmium, arsenic, and nickel in atmospheric particulate matter by multi-element electrothermal atomic absorption spectrometry

  • Ι. N. Pasias
  • Ν. S. Τhomaidis
  • E. B. Bakeas
  • Ε. A. Piperaki
Article

Abstract

A novel and robust method for the simultaneous determination of lead, cadmium, arsenic, and nickel in atmospheric particulate matter by multi-element electrothermal atomic absorption spectrometry was developed, using zirconium–iridium coating as permanent modifier (140 μg Zr and 4 μg Ir). After 300 atomization cycles, it was necessary to add 2 μg of Ir. Due to the varying concentrations of Pb in atmospheric particulate matter, lead was monitored at two wavelengths, at the less sensitive line of 261.4 nm for high concentration samples (>20 μg L−1) or at 283.3 nm for the low concentration samples. Matrix-matched calibration had to be performed for quantitative recoveries (96–102 %). Following this approach, the four elements were determined in atmospheric particulate matter samples from an industrial area near the city of Athens in two different time periods (cold–warm) with limits of detection of 5.5 ng m−3 for Pb at 261.4 nm and 0.29 ng m−3 at 283.3 nm, 0.019 ng m−3 for Cd, 0.14 ng m−3 for As, and 0.22 ng m−3 for Ni. Lead, Cd, and As levels were very low, whereas Ni content was at comparable levels with other areas worldwide.

Keywords

Zirconium–iridium modification Multi-element electrothermal atomic absorption spectrometry Elemental content Atmospheric particulate matter Industrial area Athens 

Supplementary material

10661_2013_3071_MOESM1_ESM.doc (1.2 mb)
ESM 1(DOC 1232 kb)

References

  1. Ajtony, Z., Szoboszlai, N., Suskó, E. K., Mezei, P., György, K., & Bencs, L. (2008). Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Talanta, 76, 627–634.CrossRefGoogle Scholar
  2. Barbosa, F., Jr., Lima, E. C., Zanão, R. A., & Krug, F. J. (2001). The use of a W–Rh permanent modifier for direct determination of bismuth in urine and whole blood by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 16, 842–846.CrossRefGoogle Scholar
  3. Basha, S., Jhala, J., Thorat, R., Goel, S., Trivedi, R., Shah, K., Menon, G., Gaur, P., Mody, K. H., & Jha, B. (2010). Assessment of heavy metal content in suspended particulate matter of coastal industrial town, Mithapur, Gujarat, India. Atmospheric Research, 97, 257–265.CrossRefGoogle Scholar
  4. Berglund, M., Frech, W., & Baxter, D. C. (1991). Achieving efficient, multi-element atomisation conditions for atomic absorption spectrometry using a platform-equipped, integrated-contact furnace and a palladium modifier. Spectrochimica Acta Part B, 46, 1767–1777.CrossRefGoogle Scholar
  5. Bulska, E., Piaścik, M., Katskov, D., Darangwa, N., & Grotti, M. (2007). Investigation of aging processes of graphite tubes modified with iridium and rhodium used for atomic spectrometry. Spectrochimica Acta Part B, 62, 1195–1202.CrossRefGoogle Scholar
  6. Caldas, N. M., Raposo, J. L., Jr., Gomes Neto, J. A., & Barbosa, F., Jr. (2009). Effect of modifiers for As, Cu and Pb determinations in sugar-cane spirits by GFAAS. Food Chemistry, 113, 1266–1271.CrossRefGoogle Scholar
  7. Cave, M. R., Butler, O., Cook, J. M., Cresser, M. S., Garden, L. M., Holden, A. J., & Miles, D. L. (1999). Environmental analysis-atomic spectrometry update. Journal of Analytical Atomic Spectrometry, 14, 279–352.CrossRefGoogle Scholar
  8. Council Directive 1999/30/EC, relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Official Journal L 163, 29/06/1999 P. 0041–060.Google Scholar
  9. Council Directive, 2004/107/EC, relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Official Journal L 023, 26/01/2005 P. 0003–016.Google Scholar
  10. Council Directive, on ambient air quality and cleaner air for Europe. Official Journal L 152, 11/06/2008 P. 0001–0044.Google Scholar
  11. da Silva, J. B. B., da Silva, M. A. M., Curtius, A. J., & Welz, B. (1999). Determination of Ag, Pb and Sn in aqua regia extracts from sediments by electrothermal atomic absorption spectrometry using Ru as a permanent modifier. Journal of Analytical Atomic Spectrometry, 14, 1737–1742.CrossRefGoogle Scholar
  12. EPA 600/4-77-027a, Quality Assurance Handbook for Air Pollution Measurements, vol 11, Ambient Air Specific Methods.Google Scholar
  13. Filho, V. R. A., Fernandes, K. G., de Moraes, M., & Neto, J. A. G. (2004). Evaluation of the mixtures ammonium phosphate/magnesium nitrate and palladium nitrate/magnesium nitrate as modifiers for simultaneous determination of Cd, Cr, Ni and Pb in mineral water by GFAAS. Journal of the Brazilian Chemical Society, 15, 28–33.CrossRefGoogle Scholar
  14. Frech, W., & L’vov, B. V. (1993). Matrix vapours and physical interference effects in graphite furnace atomic absorption spectrometry—II. Side-heated tubes. Spectrochimica Acta Part B, 48, 1371–1379.CrossRefGoogle Scholar
  15. Freschi, G. P. G., Freschi, C. D., & Neto, J. A. G. (2008). Evaluation of different rhodium modifiers and coatings on the simultaneous determination of As, Bi, Pb, Sb, Se and of Co, Cr, Cu, Fe, Mn in milk by electrothermal atomic absorption spectrometry. Microchimica Acta, 161, 129–135.CrossRefGoogle Scholar
  16. Gallorini, M., Rizzio, E., Birattari, C., Bonardi, M., & Croppi, F. (1999). Content of trace elements in the respirable fractions of the air particulate of urban and rural areas monitored by neutron activation analysis. Biological Trace Element Research, 71, 209–222.CrossRefGoogle Scholar
  17. Gao, Y., Nelson, E. D., Field, M. P., Ding, Q., Li, H., Sherrell, R. M., Gigliotti, C. L., Van Ry, D. A., Glenn, T. R., & Eisenreich, S. J. (2002). Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York–New Jersey harbour estuary. Atmospheric Environment, 36, 1077–1086.CrossRefGoogle Scholar
  18. Gerboles, M., Buzica, D., Brown, R. J. C., Yardley, R. E., Hanus-Illnar, A., Salfinger, M., Vallant, B., Adriaenssens, E., Claeys, N., Roekens, E., Sega, K., Jurasovic, J., Rychlik, S., Rabinak, E., Tanet, G., Passarella, R., Pedroni, V., Karlsson, V., Alleman, L., Pfeffer, U., Gladtke, D., Olschewski, A., O’Leary, B., O’Dwyer, M., Pockeviciute, D., Biel-Cwikowska, J., & Turšič, J. (2011). Interlaboratory comparison exercise for the determination of As, Cd, Ni and Pb in PM10 in Europe. Atmospheric Environment, 45, 3488–3499.CrossRefGoogle Scholar
  19. Giacomelli, M. B. O., da Silva, J. B. B., Saint’ Pierre, T. D., & Curtius, A. J. (2004). Use of iridium plus rhodium as permanent modifier to determine As, Cd and Pb in acids and ethanol by electrothermal atomic absorption spectrometry. Microchemical Journal, 77, 151–156.CrossRefGoogle Scholar
  20. Gupta, A. K., Karar, K., & Srivastava, A. (2007). Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. Journal of Hazardous Materials, 142, 279–287.CrossRefGoogle Scholar
  21. Harnly, J. M., & Radziuk, B. (1995). Effect of furnace atomization temperatures on simultaneous multielement atomic absorption measurement using a transversely-heated graphite atomizer. Journal of Analytical Atomic Spectrometry, 10, 197–206.CrossRefGoogle Scholar
  22. Hieu, N. T., & Lee, B.-K. (2010). Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmospheric Research, 98, 526–537.CrossRefGoogle Scholar
  23. Hoenig, M., & Cilissen, A. (1997). Performances and practical applications of simultaneous multi-element electrothermal atomic absorption spectrometry the case of SIMAA 6000. Spectrochimica Acta Part B, 52, 1443–1449.CrossRefGoogle Scholar
  24. Kalantzis, V., Rousis, N., Pasias, I., Thomaidis, N., & Piperaki, E. (2012). Evaluation of different modifiers for the determination of arsenic in leachate samples from sanitary landfills by electrothermal atomic absorption spectrometry. Analytical Letters, 45, 592–602.CrossRefGoogle Scholar
  25. Kim, K.-H., Lee, J.-H., & Jang, M.-S. (2002). Metals in airborne particulate matter from the first and second industrial complex area of Taejon city, Korea. Environmental Pollution, 118, 41–51.CrossRefGoogle Scholar
  26. Lima, E. C., Brasil, J. L., & Santos, A. H. D. P. (2003). Evaluation of Rh, Ir, Ru, W–Rh, W–Ir and W–Ru as permanent modifiers for the determination of lead in ashes, coals, sediments, sludges, soils, and freshwaters by electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 484, 233–242.CrossRefGoogle Scholar
  27. Lima, E. C., Krug, F. J., & Jackson, K. W. (1998). Evaluation of tungsten–rhodium coating on an integrated platform as a permanent chemical modifier for cadmium, lead, and selenium determination by electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B, 53, 1791–1804.CrossRefGoogle Scholar
  28. López, J. M., Callén, M. S., Murillo, R., García, T., Navarro, M. V., de la Cruz, M. T., & Mastral, A. M. (2005). Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environmental Research, 99, 58–67.CrossRefGoogle Scholar
  29. Meeravali, N. N., & Kumar, S. J. (2001). The utility of a W–Ir permanent chemical modifier for the determination of Ni and V in emulsified fuel oils and naphtha by transverse heated electrothermal atomic absorption spectrometer. Journal of Analytical Atomic Spectrometry, 16, 527–532.CrossRefGoogle Scholar
  30. Merešová, J., Florek, M., Holý, K., Ješkovský, M., Sýkora, I., Frontasyeva, M. V., Pavlov, S. S., & Bujdoš, M. (2008). Evaluation of elemental content in air-borne particulate matter in low-level atmosphere of Bratislava. Atmospheric Environment, 42, 8079–8085.CrossRefGoogle Scholar
  31. Na, K., & Cocker, D. R., III. (2009). Characterization and source identification of trace elements in PM2.5 from Mira Loma, Southern California. Atmospheric Research, 93, 793–800.CrossRefGoogle Scholar
  32. Nishikawa, M., Matsui, I., Batdorj, D., Jugder, D., Mori, I., Shimizu, A., Sugimoto, N., & Takahashi, K. (2011). Chemical composition of urban airborne particulate matter in Ulaanbaatar. Atmospheric Environment, 45, 5710–5715.CrossRefGoogle Scholar
  33. Ortner, H. M., Bulska, E., Rohr, U., Schlemmer, G., Weinbruch, S., & Welz, B. (2002). Modifiers and coatings in graphite furnace atomic absorption spectrometry—mechanisms of action (a tutorial review). Spectrochimica Acta Part B, 57, 1835–1853.CrossRefGoogle Scholar
  34. Pancras, J. P., Ondov, J. M., & Zeisler, R. (2005). Multi-element electrothermal AAS determination of 11 marker elements in fine ambient aerosol slurry samples collected with SEAS-II. Analytica Chimica Acta, 538, 303–312.CrossRefGoogle Scholar
  35. Perkin-Elmer Corp. (1994). SIMAA 6000 Atomic Absorption Spectrometer manual.Google Scholar
  36. Perrino, C., Catrambone, M., & Esposito, G. (2009). Characterisation of gaseous and particulate atmospheric pollutants in the East Mediterranean by diffusion denuder sampling lines (2009). Environmental Monitoring and Assessment, 152, 231–244.CrossRefGoogle Scholar
  37. Quiterio, S. L., da Silva, C. R. S., Arbilla, G., & Escaleira, V. (2004). Metals in airborne particulate matter in the industrial district of Santa Cruz, Rio de Janeiro, in an annual period. Atmospheric Environment, 38, 321–331.CrossRefGoogle Scholar
  38. Rademeyer, C. J., Radziuk, B., Romanova, N., Skaugset, N. P., Skogstad, A., & Thomassen, Y. (1995). Permanent iridium modifier for electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 10, 739–745.CrossRefGoogle Scholar
  39. Rademeyer, C. J., Radziuk, B., Romanova, N., Thomassen, Y., & Tittarelli, P. (1997). Reduction of background absorption in the measurement of cadmium, lead and selenium in whole blood using iridium-sputtered graphite tubes in electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 12, 81–84.CrossRefGoogle Scholar
  40. Radziuk, B., Rödel, G., Zeiher, M., Mizuno, S., & Yamamoto, K. (1995). Solid state detector for simultaneous multi-element electrothermal atomic absorption spectrometry with Zeeman-effect background correction. Journal of Analytical Atomic Spectrometry, 10, 415–422.CrossRefGoogle Scholar
  41. Ragosta, M., Caggiano, R., D’Emilio, M., & Macchiato, M. (2002). Source origin and parameters influencing levels of heavy metals in TSP, in an industrial background area of Southern Italy. Atmospheric Environment, 36, 3071–3087.CrossRefGoogle Scholar
  42. Resano, M., Rello, L., Flórez, M., & Belarra, M. A. (2011). On the possibilities of high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple atomic lines. Spectrochimica Acta Part B, 66, 321–328.CrossRefGoogle Scholar
  43. Salam, A., Bauer, H., Kassin, K., Ullah, S. M., & Puxbaum, H. (2003). Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka—Bangladesh). Atmospheric Environment, 37, 2517–2528.CrossRefGoogle Scholar
  44. Schlemmer, G., & Welz, B. (1986). Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B, 41, 1157–1165.CrossRefGoogle Scholar
  45. Shah, M. H., & Shaheen, N. (2007). Statistical analysis of atmospheric trace metals and particulate fractions in Islamabad, Pakistan. Journal of Hazardous Materials, 147, 759–767.CrossRefGoogle Scholar
  46. Shah, M. H., Shaheen, N., Jaffar, M., Khalique, A., Tariq, S. R., & Manzoor, S. (2006). Spatial variations in selected metal contents and particle size distribution in an urban and rural atmosphere of Islamabad, Pakistan. Journal of Environmental Management, 78, 128–137.CrossRefGoogle Scholar
  47. Shridhar, V., Khillare, P. S., Agarwa, l. T., & Ray, S. (2010). Metallic species in ambient particulate matter at rural and urban location of Delhi. Journal of Hazardous Materials, 175, 600–607.CrossRefGoogle Scholar
  48. Smichowski, P., Marrero, J., & Gómez, D. (2005). Inductively coupled plasma optical emission spectrometric determination of trace element in PM10 airborne particulate matter collected in an industrial area of Argentina. Microchemical Journal, 80, 9–17.CrossRefGoogle Scholar
  49. Thomaidis, N. S., Manalis, N., Viras, L., & Lekkas, T. D. (2001). Determination of lead, cadmium, arsenic and nickel in atmospheric particulate matter by simultaneous multi-element electrothermal atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 79, 121–132.CrossRefGoogle Scholar
  50. Tsalev, D. L., D’Ulivo, A., Lampugnani, L., Di Marco, M., & Zamboni, R. (1996). Thermally stabilized iridium on an integrated, carbide-coated platform as a permanent modifier for hydride-forming elements in electrothermal atomic absorption spectrometry. Part 2. Hydride generation and collection, and behaviour of some organoelement species. Journal of Analytical Atomic Spectrometry, 11, 979–988.CrossRefGoogle Scholar
  51. van der Gon, H. D., & Appelman, W. (2009). Lead emissions from road transport in Europe: a revision of current estimates using various estimation methodologies. Science of the Total Environment, 407, 5367–5372.CrossRefGoogle Scholar
  52. Vijayanand, C., Rajaguru, P., Kalaiselvi, K., Panneer Selvam, K., & Palanivel, M. (2008). Assessment of heavy metal contents in the ambient air of the Coimbatore city, Tamilnadu, India. Journal of Hazardous Materials, 160, 548–553.CrossRefGoogle Scholar
  53. Vilar, M., Barciela, J., García-Martín, S., Peña, R. M., & Herrero, C. (2007). Comparison of different permanent chemical modifiers for lead determination in Orujo spirits by electrothermal atomic absorption spectrometry. Talanta, 71, 1629–1636.CrossRefGoogle Scholar
  54. Volynsky, A. B. (1998). Graphite atomizers modified with high-melting carbides for electrothermal atomic absorption spectrometry. II. Practical aspects. Spectrochimica Acta Part B, 53, 1607–1645.CrossRefGoogle Scholar
  55. Voutsa, D., Samara, C., Kouimtzis, T., & Ochsenkühn, K. (2002). Elemental composition of airborne particulate matter in the multi-impacted urban area of Thessaloniki, Greece. Atmospheric Environment, 36, 4453–4462.CrossRefGoogle Scholar
  56. Welz, B. (2005). High-resolution continuum source AAS: the better way to perform atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 381, 69–71.CrossRefGoogle Scholar
  57. Welz, B., Becker-Ross, H., Florek, S., Heitmann, U., & Vale, M. G. R. (2003). High-resolution continuum-source atomic absorption spectrometry—what can we expect? Journal of the Brazilian Chemical Society, 14, 220–229.CrossRefGoogle Scholar
  58. Zereini, F., Alt, F., Messerschmidt, J., Wiseman, C., Feldmann, I., Von Bohlen, A., Müller, J., Liebl, K., & Puttmann, W. (2005). Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany. Environmental Science and Technology, 39, 2983–2989.CrossRefGoogle Scholar
  59. Zlotorzynska, E. D., Kelly, M., Chen, H., & Chakrabarti, C. L. (2005). Application of capillary electrophoresis combined with a modified BCR sequential extraction for estimating of distribution of selected trace metals in PM2.5 fractions of urban airborne particulate matter. Chemosphere, 58, 1365–1376.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ι. N. Pasias
    • 1
  • Ν. S. Τhomaidis
    • 1
  • E. B. Bakeas
    • 1
  • Ε. A. Piperaki
    • 1
  1. 1.Laboratory of Analytical Chemistry, Department of ChemistryUniversity of AthensAthensGreece

Personalised recommendations