Skip to main content
Log in

Assessment of oxidative stress markers and concentrations of selected elements in the leaves of Cassia occidentalis growing wild on a coal fly ash basin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Assessment of oxidative stress levels and tissue concentrations of elements in plants growing wild on fly ash basins is critical for realistic hazard identification of fly ash disposal areas. Hitherto, levels of oxidative stress markers in plants growing wild on fly ash basins have not been adequately investigated. We report here concentrations of selected metal and metalloid elements and levels of oxidative stress markers in leaves of Cassia occidentalis growing wild on a fly ash basin (Badarpur Thermal Power Station site) and a reference site (Garhi Mandu Van site). Plants growing on the fly ash basin had significantly high foliar concentration of As, Ni, Pb and Se and low foliar concentration of Mn and Fe compared to the plants growing on the reference site. The plants inhabiting the fly ash basin showed signs of oxidative stress and had elevated levels of lipid peroxidation, electrolyte leakage from cells and low levels of chlorophyll a and total carotenoids compared to plants growing at the reference site. The levels of both protein thiols and nonprotein thiols were elevated in plants growing on the fly ash basin compared to plants growing on the reference site. However, no differences were observed in the levels of cysteine, reduced glutathione and oxidized glutathione in plants growing at both the sites. Our study suggests that: (1) fly ash triggers oxidative stress responses in plants growing wild on fly ash basin, and (2) elevated levels of protein thiols and nonprotein thiols may have a role in protecting the plants from environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Baszynski, T., Tukendorf, M., Ruszkowska, M., Skorzynska, E., & Maksymiec, W. (1988). Characteristics of the photosynthetic apparatus of copper non-tolerant spinach exposed to excess copper. Journal of Plant Physiology, 132, 708–713.

    Article  CAS  Google Scholar 

  • Bidar, G., Garcon, G., Pruvot, C., Dewaele, D., Cazier, F., Douay, F., & Shirali, P. (2007). Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environmental Pollution, 147, 546–553.

    Article  CAS  Google Scholar 

  • Brake, S. S., Jensen, R. R., & Mattox, J. M. (2004). Effects of coal fly ash amended soils on trace element uptake in plants. Environmental Geology, 45, 680–689.

    Article  CAS  Google Scholar 

  • Carlson, C. L., & Adriano, D. C. (1993). Environmental impacts of coal combustion residues. Journal of Environmental Quality, 22, 227–247.

    Article  CAS  Google Scholar 

  • Cobbett, C. S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 123, 825–832.

    Article  CAS  Google Scholar 

  • Dazy, M., Jung, V., Ferard, J.-F., & Masfaraud, J.-F. (2008). Ecological recovery of vegetation on a coke-factory soil: role of plant antioxidant enzymes and possible implications in site restoration. Chemosphere, 74, 57–63.

    Article  CAS  Google Scholar 

  • Devi, S. R., & Prasad, M. N. V. (1998). Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Science, 138, 157–165.

    Article  CAS  Google Scholar 

  • Dellantonio, A., Fitz, W. J., Custovic, H., Repmann, F., Schneider, B. U., Grunewald, H., Guber, V., Zgorelec, Z., Zerem, N., Carter, C., Markovic, M., Puschenreiter, M., & Wenzel, W. (2008). Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina. Environmental Pollution, 153, 677–686.

    Article  CAS  Google Scholar 

  • Dominguez-Solis, J. R., Lopez-Martin, M. C., Ager, F. J., Ynsa, M. D., Romero, L. C., & Gotor, C. (2004). Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnology Journal, 2, 469–476.

    Article  CAS  Google Scholar 

  • Djurdjevic, L., Mitrovic, M., Pavlovic, P., Gajic, G., & Kostic, O. (2006). Phenolic acids as bioindicators of fly ash deposit revegetation. Archives of Environmental Contamination and Toxicology, 50, 488–495.

    Article  CAS  Google Scholar 

  • Dwivedi, S., et al. (2007). Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil. Chemosphere, 67, 140–151.

    Article  CAS  Google Scholar 

  • Gaitonde, M. K. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochemical Journal, 104, 627–633.

    CAS  Google Scholar 

  • Gillman, G. P., & Sumpter, E. A. (1986). Modification to compulsive exchange method for measuring characteristics of soils. Australian Journal of Soil Research, 24, 61–66.

    Article  CAS  Google Scholar 

  • Gonnelli, C., Galardi, F., & Gabbrielli, R. (2001). Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiologia Plantarum, 113, 507–514.

    Article  CAS  Google Scholar 

  • Gupta, D. K., Rai, U. N., Tripathi, R. D., & Inouhe, M. (2002). Impacts of fly ash on soil and plant responses. Journal of Plant Research, 115, 401–409.

    Article  CAS  Google Scholar 

  • Gupta, D. K., et al. (2007). Growth and biochemical parameters of Cicer arietinum L. grown on amended fly ash. Environmental Monitoring and Assessment, 134, 479–487.

    Article  CAS  Google Scholar 

  • Hartley-Whitaker, J., Ainsworth, G., & Meharg, A. A. (2001). Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell & Environment, 24, 713–722.

    Article  CAS  Google Scholar 

  • Haynes, R. J. (2009). Reclamation and revegetation of fly ash disposal sites—challenges and research needs. Journal of Environmental Management, 90, 43–53.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast I. Kinetic and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • India Meteorological Department (2008). Mean maximum/minimum temperatures and monthly rainfall over Delhi (Palam), http://121.241.116.157/climatology/plm.htm. Accessed on 15 August 2008

  • Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India Ltd.

    Google Scholar 

  • Jankowski, J., Ward, C. R., French, D., & Groves, S. (2006). Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel, 85, 243–256.

    Article  CAS  Google Scholar 

  • Kumar, A., et al. (2002). Biochemical responses of Cassia siamea Lamk. grown on coal combustion residue (fly-ash). Bulletin of Environmental Contamination and Toxicology, 68, 675–683.

    Article  CAS  Google Scholar 

  • Kuzmick, D. M., Mitchelmore, C. L., Hopkins, W. A., & Rowe, C. L. (2007). Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius). Science of the Total Environment, 373, 420–430.

    Article  CAS  Google Scholar 

  • Lamothe, P. J., Fries, T. L., & Consul, J. J. (1986). Evaluation of a microwave oven system for the dissolution of geologic samples. Analytical Chemistry, 58, 1881–1886.

    Article  CAS  Google Scholar 

  • Love, A., Tandon, R., Banerjee, B. D., & Babu, C. R. (2009). Comparative study on elemental composition and DNA damage in leaves of a weedy plant species, Cassia occidentalis, growing wild on weathered fly ash and soil. Ecotoxicology, 18, 791–801.

    Article  CAS  Google Scholar 

  • Madejon, P., Maranon, T., Murillo, J. M., & Robinson, B. (2004). White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution, 132, 145–155.

    Article  CAS  Google Scholar 

  • Maleva, M. G., Nekrasova, G. F., Malec, P., Prasad, M. N. V., & Strzalka, K. (2009). Ecophysiological tolerance of Elodea canadensis to nickel exposure. Chemosphere, 77, 392–398.

    Article  CAS  Google Scholar 

  • Marquez-Garcia, B., Horemans, N., Cuypers, A., Guisez, Y., & Cordoba, F. (2011). Antioxidants in Erica andevalensis: a comparative study between wild plants and cadmium-exposed plants under controlled conditions. Plant Physiology and Biochemistry, 49, 110–115.

    Article  CAS  Google Scholar 

  • Meers, E., Ruttens, A., Geebelen, W., Vangronsveld, J., Samson, R., Vanbroekhoven, K., Vandegehuchte, M., Diels, L., & Tack, F. M. G. (2005). Potential use of the plant antioxidant network for environmental exposure assessment of heavy metals in soils. Environmental Monitoring and Assessment, 120, 243–267.

    Article  Google Scholar 

  • Mishra, L. C., & Shukla, K. N. (1986). Effects of fly-ash deposition on growth, metabolic and dry matter production of maize and soyabean. Environmental Pollution, 42, 1–13.

    CAS  Google Scholar 

  • MoEF (2005). Annual report. Ministry of Environment and Forests, Government of India

  • Murphy, A., & Taiz, L. (1995). Comparison of mettlothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes: correlation with copper tolerance. Plant Physiology, 109, 945–954.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Petaloti, C., Triantafyllou, A., Kouimtzis, T., & Samara, C. (2006). Trace elements in atmospheric particulate matter over a coal burning production area of western Macedonia, Greece. Chemosphere, 65, 2233–2243.

    Article  CAS  Google Scholar 

  • Pichtel, J., & Hayes, J. M. (1990). Influence of fly ash on soil microbial activity and populations. Journal of Environmental Quality, 19, 593–597.

    Article  CAS  Google Scholar 

  • Polle, A., Schwanz, P., & Rudolf, C. (2001). Developmental and seasonal changes of stress responsiveness in beech leaves (Fagus sylvatica L.). Plant Cell & Environment, 24, 812–829.

    Google Scholar 

  • Qian, M., Li, X., & Shen, Z. (2005). Adaptive copper tolerance in Elsholzia haichowensis involves production of Cu-induced thiol peptides. Plant Growth Regulation, 47, 65–73.

    Article  CAS  Google Scholar 

  • Reash, R. J., Lohner, T. W., & Wood, K. V. (2006). Selenium and other trace metals in fish inhabiting a fly ash stream: implications for regulatory tissue thresholds. Environmental Pollution, 142, 397–408.

    Article  CAS  Google Scholar 

  • Rees, D. G. (1985). Essential statistics. London: Chapman and Hall.

    Google Scholar 

  • Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53, 1351–1365.

    Article  CAS  Google Scholar 

  • Seth, C. S., Chaturvedi, P. K., & Misra, V. (2008). The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicology and Environmental Safety, 71, 76–85.

    Article  CAS  Google Scholar 

  • Sinha, S., Rai, U. N., Bhatt, K., Pandey, K., & Gupta, A. K. (2005). Fly-ash-induced oxidative stress and tolerance in Prosopis juliflora L. grown on different amended substrates. Environmental Monitoring and Assessment, 102, 447–457.

    Article  CAS  Google Scholar 

  • Smirnoff, N. (1998). Plant resistance to environmental stress. Current Opinions in Biotechnology, 9, 214–219.

    Article  CAS  Google Scholar 

  • Soco, E., & Kalembkiewicz, J. (2007). Investigations of sequential leaching behaviour of Cu and Zn from coal fly ash and their mobility in environmental conditions. Journal of Hazardous Materials, 145, 482–487.

    Article  CAS  Google Scholar 

  • Tausz, M., Sircelj, H., & Grill, D. (2004). The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? Journal of Experimental Botany, 55, 1955–1962.

    Article  CAS  Google Scholar 

  • Zhang, J., & Kirkham, M. B. (1996). Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist, 132, 361–373.

    Article  CAS  Google Scholar 

  • Zhang, W., Cai, Y., Downum, K. R., & Ma, L. Q. (2004). Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environmental Pollution, 131, 337–345.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.L. had Junior and Senior Research Fellowship from the Council for Scientific and Industrial Research, India. Financial support of the Ministry of Environment and Forests, Government of India, is acknowledged. We acknowledge the support of Shiv Shankar Prasad Roy in undertaking field work. The views expressed by the corresponding author are his personal and not endorsed by the Ministry of Environment and Forests, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, A., Banerjee, B.D. & Babu, C.R. Assessment of oxidative stress markers and concentrations of selected elements in the leaves of Cassia occidentalis growing wild on a coal fly ash basin. Environ Monit Assess 185, 6553–6562 (2013). https://doi.org/10.1007/s10661-012-3046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3046-6

Keywords

Navigation