Skip to main content

Advertisement

Log in

Dual character of Sundarban estuary as a source and sink of CO2 during summer: an investigation of spatial dynamics

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A comprehensive attempt has been made to evaluate the diurnal and spatial pattern of CO2 exchange between the atmosphere and water along the estuarine track of Indian Sundarbans during the two summer months, April and May, 2011. Rigorous field observations were carried out which included the hourly measurements of total alkalinity, pH, fugacity of CO2 in ambient air and water surface, dissolved oxygen, and chlorophyll a. The estuarine water was found rich in total alkalinity and was oversaturated with CO2 throughout the diurnal cycle in the two stations situated at the inner and middle estuary, respectively, whereas an entirely reverse situation was observed in the outer fringes. The fugacity of CO2 in water ranged from 152 to 657 μatm during the study period. The percentage of over-saturation in inner and middle estuary varied from 103 to 168 and 103 to 176 %, respectively, whereas the degree of under-saturation in the outer estuary lied between 40 and 99 %. Chlorophyll a concentrations were found higher in the outer estuary (12.3 ± 2.2 mg m−3) compared to the middle (6.4 ± 0.6 mg m−3) and inner parts (1.6 ± 0.2 mg m−3), followed by a similar decreasing pattern in nutrient availability from the outer to inner estuary. The sampling stations situated at the inner and middle estuary acted as a net source of 29.69 and 23.62 mg CO2 m−2 day−1, respectively, whereas the outer station behaved as a net sink of −33.37 mg CO2 m−2 day−1. The study of primary production and community respiration further supports the heterotrophic nature of the estuary in the inner region while the outer periphery was marked by dominant autotrophic character. These contrasting results are in parity with the source characters of many inner estuaries and sinking characters of the outer estuaries situated at the distal continental shelf areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alongi, D. M. (1998). Coastal ecosystem processes. Boca Raton: CRC.

    Google Scholar 

  • Alongi, D. M., Sasekumar, A., Tirendi, F., & Dixon, P. (1998). The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. Journal of Experimental Marine Biology and Ecology, 225, 197–218.

    Article  Google Scholar 

  • Benson, B. B., & Krause, J. R. (1984). The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with atmosphere. Limnological Oceanography, 29, 620–632.

    Article  CAS  Google Scholar 

  • Biswas, H., Mukhopadhyay, S. K., De, T. K., Sen, S., & Jana, T. K. (2004). Biogenic controls on the air–water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India. Limnological Oceanography, 49(1), 95–101.

    Article  CAS  Google Scholar 

  • Biswas, H., Dey, M., Ganguly, D., et al. (2010). Comparative analysis of phytoplankton composition and abundance over a two-decade period at the land–ocean boundary of a tropical mangrove ecosystem. Estuaries and Coasts, 33(2), 384–394.

    Article  CAS  Google Scholar 

  • Borges, A. V., & Frankignoulle, M. (2002). Distribution and air–water exchange of carbon dioxide in the Scheldt plume off the Belgian coast. Biogeochemistry, 59, 41–67.

    Article  CAS  Google Scholar 

  • Borges, A. V., Djenidi, S., Lacroix, G., et al. (2003). Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letter, 30(11), 1558.

    Article  Google Scholar 

  • Bouillon, S., & Boschker, H. T. S. (2006). Bacterial carbon sources in coastal sediments: a cross system analysis based on stable isotope data of biomarkers. Biogeoscience, 3, 175–185.

    Article  CAS  Google Scholar 

  • Bouillon, S., Frankignoulle, M., Dehairs, F., Velimirov, B., Eiler, A., Etcheber, H., et al. (2003). Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: the local impact of extensive mangrove forests. Global Biogeochemical Cycles, 17(4), 1114. doi:10.1029/2002GB002026.

    Article  Google Scholar 

  • Bouillon, S., Borges, A. V., Castaneda-Moya, E., et al. (2008). Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles. doi:10.1029/2007GB003052.

  • Brasse, S., Reimer, A., Seifert, R., & Michaelis, W. (1999). The influence of intertidal mudflats on the dissolved inorganic carbon and total alkalinity distribution, in the German Bight, southeastern North Sea. Journal of Sea Research, 42, 93–103.

    Article  CAS  Google Scholar 

  • Brasse, S., Nellen, M., Seifert, R., & Michaelis, W. (2002). The carbon dioxide system in the Elbe estuary. Biogeochemistry, 59, 25–40.

    Article  CAS  Google Scholar 

  • Cai, W., & Wang, Y. (1998). The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnological Oceanography, 43(4), 657–668.

    Article  CAS  Google Scholar 

  • Chen, C. T. A., & Borges, A. V. (2009). Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Research II, 56, 578–590.

    Article  CAS  Google Scholar 

  • Chen, C. T. A., Liu, K. K., & MacDonald, R. (2003). Continental margin exchanges. In M. J. R. Fasham (Ed.), Ocean biogeochemistry: AJGOFS synthesis (pp. 53–97). Berlin: Springer.

    Chapter  Google Scholar 

  • de la Paz, M., Gómez-Parra, A., & Forja, J. (2007). Inorganic carbon dynamic and air–water CO2 exchange in the Guadalquivir Estuary (SW Iberian Peninsula). Journal of Marine Systems, 65, 265–277.

    Article  Google Scholar 

  • Devol, A. H., Quay, P. E., Richey, J. E., & Martinelli, L. A. (1987). The role of gas exchange in the inorganic carbon, oxygen and 222Rn budgets of the Amazon River. Limnological Oceanography, 32, 235–248.

    Article  CAS  Google Scholar 

  • Ganguly, D., Dey, M., Chowdhury, C., Pattnaik, A. A., Sahu, B. K., & Jana, T. K. (2011). Coupled micrometeorological and biological processes on atmospheric CO2 concentrations at the land-ocean boundary, NE coast of India. Atmospheric Environment, 45, 3903–3910.

    Article  CAS  Google Scholar 

  • Gattuso, J. P., Frankignoulle, M., & Wollast, R. (1998). Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology, Evolution, and Systematics, 29, 405–433.

    Article  Google Scholar 

  • Gazeau, F., Borges, A. V., Barron, C., et al. (2005). Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): evaluation of methods and inter annual variability. Marine Ecological Progress Series, 301, 23–41.

    Article  CAS  Google Scholar 

  • Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquatic Science, 68, 338–354.

    Article  Google Scholar 

  • Grasshoff, K. (1983). Determination of nutrients. In K. Grasshoff, M. Ehrhard, & K. Kremling (Eds.), Methods of sea water analysis (pp. 125–187). Weinheim: Verlag Chemie.

    Google Scholar 

  • Heip, C., Goosen, N. K., Herman, P. M. J., et al. (1995). Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology Annual Review, 33, 1–149.

    Google Scholar 

  • Hopkinson, C. S. J., & Smith, E. M. (2005). Estuarine respiration: an overview of benthic, pelagic and whole system respiration. In P. A. Giorgio & P. J. L. Williams (Eds.), Respiration in aquatic ecosystems (pp. 123–147). Oxford: Oxford University Press.

    Google Scholar 

  • Kemp, W. M., Smith, E. M., Marvin-DiPasquale, M., & Boynton, W. R. (1997). Organic carbon-balance and net ecosystem metabolism in Chesapeake Bay. Marine Ecological Progress Series, 150, 229–248.

    Article  CAS  Google Scholar 

  • Khoo, K. H., Ramette, R. W., Culberson, C. H., & Bates, R. G. (1977). Determination of hydrogen ion concentrations in seawater from 5 to 40 °C: standard potentials at salinities from 20 to 45‰. Analytical Chemistry, 49(1), 29–34.

    Article  CAS  Google Scholar 

  • Kristensen, E., Andersen, F. O., Holmbe, N., Holmer, M., & Thongtham, N. (2000). Carbon and nitrogen mineralization in sediments of Bangrong mangrove area, Phuket, Thailand. Aquatic Microbial Ecology, 22, 199–213.

    Article  Google Scholar 

  • Laruelle, G. G., Durr, H. H., Slomp, C. P., & Borges, A. V. (2010). Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letter. doi:10.1029/2010GL043691.

  • Lewis, E., & Wallace, D. W. R. (1998). Program developed for CO 2 system calculations. ORNL/CDIAC-105. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.

    Book  Google Scholar 

  • Liss, P. S. (1976). Conservative and non-conservative behaviour of dissolved constituents during estuarine mixing. In J. D. Burton & P. S. Liss (Eds.), Estuarine chemistry (pp. 93–130). New York: Academic.

    Google Scholar 

  • Liss, P. S., & Merlivat, L. (1986). Air sea gas exchange rates: introduction and synthesis. In P. Buat-Menard (Ed.), The role of air sea exchange in geochemical cycling (pp. 113–129). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Macintyre, S., Wanninkhof, R., & Chanton, J. P. (1995). Trace gas exchange across the air–water interface in freshwaters and coastal marine environments. In P. A. Mattson & R. C. Harris (Eds.), Biogenic trace gasses: measuring emissions from soils and waters (pp. 52–57). New York: Blackwell.

    Google Scholar 

  • Middelburg, J. J., Nieuwenhuize, J., Slim, F. J., & Ohowa, B. (1996). Sediment biogeochemistry in an East African mangrove forest (Gazi Bay, Kenya). Biogeochemistry, 34, 133–155.

    Article  Google Scholar 

  • Mukhopadhyay, S. K., Jana, T. K., De, T. K., & Sen, S. (2000). Measurement of exchange of CO2 in mangrove forest of Sundarbans using micrometeorological method. Tropical Ecology, 41(1), 57–60.

    Google Scholar 

  • Mukhopadhyay, S. K., Biswas, H., De, T. K., Sen, S., & Jana, T. K. (2002). Seasonal effects on the air–water carbon dioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India. Journal of Environmental Monitoring, 4, 549–552.

    Article  CAS  Google Scholar 

  • Odum, H.T., & Hoskin, C.M. (1958). Comparative studies of the metabolism of Texas Bays. Publications of the Institute of Marine Science, University of Texas, 5, 16–46.

  • Odum, H.T., & Wilson, R. (1962). Further studies on the reaeration and metabolism of Texas Bays. Publications of the Institute of Marine Science, University of Texas, 8, 23–55.

    Google Scholar 

  • Ovalle, A. R. C., Rezende, C. E., Lacerda, L. D., & Silva, C. A. R. (1990). Factors affecting the hydrochemistry of a mangrove creek, Sepetiba Bay, Brazil. Estuarine, Coastal and Shelf Science, 31, 639–650.

    Article  CAS  Google Scholar 

  • Peng, T. H., Takahashi, T., Broecker, W. S., & Olafsson, J. (1987). Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: observation and a model. Tellus, 39B(5), 439–458.

    Article  CAS  Google Scholar 

  • Raymond, P. A., & Cole, J. J. (2001). Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries, 24, 312–317.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis (2nd ed.). Canada: Fisheries Research Board.

    Google Scholar 

  • Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5), 7373–7382.

    Article  Google Scholar 

  • Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of non-ideal gas. Marine Chemistry, 2, 203–215.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Indian Institute of Remote Sensing and National Remote Sensing Centre, Department of Space, Government of India, for funding the research work. Abhra Chanda is thankful to Department of Science and Technology, Government of India for providing DST-INSPIRE fellowship. The anonymous reviewers are humbly acknowledged for their valuable suggestions and recommendations to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Akhand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhand, A., Chanda, A., Dutta, S. et al. Dual character of Sundarban estuary as a source and sink of CO2 during summer: an investigation of spatial dynamics. Environ Monit Assess 185, 6505–6515 (2013). https://doi.org/10.1007/s10661-012-3042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3042-x

Keywords

Navigation