Skip to main content
Log in

Identification of source regions of PM10 with backward trajectory-based statistical models during PM10 episodes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study applies backward trajectory-based statistical techniques, residence time, conditional probability and emission attraction to evaluate potential source regions of PM10 over a coastal region. PM10 episodes were selected by principal component analysis for 1998–2005 over the Kaoping air quality basin. Residence time was applied to identify potential regions in which air parcels would remain over their 6- and 12-h trajectories. Emission attraction and conditional probability were used to analyze contribution ratios of distinct emission sources to air quality stations. The PM10 episodes screen 175 days (6 % of total days) and 35.9 % of total station numbers. Residence time and emission attraction clearly identified potential areas in which backward trajectories remained during PM10 episodes and high PM10 events. Emission attraction evaluated relative contributions of various sources (stationary, line, and area) from specific jurisdictions, and provided information on specific sources for high-priority PM10 emissions reduction. The conditional probabilities of emission attraction during high PM10 events show that high values concentrated near stationary and area sources in the city of Kaohsiung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashbaugh, L. L. (1983). A statistical trajectory technique for determining air pollution source regions. Journal of the Air Pollution Control Association, 33, 1263–1270.

    Article  Google Scholar 

  • Ashbaugh, L. L., Malm, W. C., Sadeh, W. Z., et al. (1985). A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment, 19, 1263–1270.

    Article  CAS  Google Scholar 

  • Barnes, S.L. (1973). Mesoscale objective map analysis using weighted time series observations. NOAA Tech Memo, ERL NSSL-62, 60 pp.

  • Begum, B. A., Biswas, S. K., Markwitz, A., Hopke, P. K., et al. (2010). Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aerosol Air Quality Resarch, 10, 345–353.

    CAS  Google Scholar 

  • Chang, K. H. (2008). Modeling approach for emission reduction of O3 precursors in Southern Taiwan. Atmospheric Environment, 42, 6733–6742.

    Article  CAS  Google Scholar 

  • Chang, L. F. W., Hwang, R. R., Lin, S. C., et al. (1983). A variation-kinematic model for flow over complex terrain. Annual Report of the Institute of Physics Academia Sinica, 13, 89–102.

    Google Scholar 

  • Chen, T. F., & Chang, K. H. (2006). Formulating the relationship between ozone pollution features and the transition value of photochemical indicators. Atmospheric Environment, 40, 1816–1827.

    Article  CAS  Google Scholar 

  • Cheng, M. D., Hopke, P. K., Zeng, Y., et al. (1993). A receptor-oriented methodology for determining source regions of particulate sulfate at Dorset, Ontario. Journal of Geophysical Research, 98, 16839–16849.

    Article  Google Scholar 

  • Cheng, M. D., Hopke, P. K., Barrie, L., Rippe, A., Olson, M., Landsberger, S., et al. (1993). Qualitative determination of source regions of aerosol in Canadian high Arctic. Environmental Science and Technology, 27, 2063–2071.

    Article  CAS  Google Scholar 

  • Comrie, A. C. (1994). Tracking ozone: air mass trajectories and pollutant source regions influencing ozone in Pennsylvania forests. Annals of the Association of American Geographers, 84, 635–651.

    Article  Google Scholar 

  • Gao, N., Cheng, M. D., Hopke, P. K., et al. (1993). Potential source contribution function analysis and source apportionment of sulfur species measured at Rubidoux, CA during the southern California air quality study, 1987. Analytical Chimica Acta, 277, 369–380.

    Article  CAS  Google Scholar 

  • Held, T., Ying, Q., Kaduwela, A., Kellman, M., et al. (2004). Modeling particulate matter in the San Joaquin Valley with a source oriented externally mixed three-dimensional photochemical grid model. Atmospheric Environment, 38, 3689–3711.

    Article  CAS  Google Scholar 

  • Kleemana, M. J., Ying, Q., Lu, J., Mysliwiec, M. J., Griffin, R. J., Chen, J., Cleg, S., et al. (2007). Source apportionment of secondary organic aerosol during a severe photochemical smog episode. Atmospheric Environment, 41, 1521–1538.

    Article  Google Scholar 

  • Lin, C. H., Wu, Y. L., Chang, K. H., Lai, C. H., et al. (2004). A method for locating influential pollution sources and estimating their contributions. Environment Modeling and Assessment, 9, 129–136.

    Article  Google Scholar 

  • Munn, R. E., Likens, G. E., Weisman, B., Hornbeck, J. W., Martin, C. W., Bormann, F. H., et al. (1984). A meteorological analysis of the precipitation chemistry event samples at Hubbard Brook (N.H.). Atmospheric Environment, 18, 2775–2779.

    Article  CAS  Google Scholar 

  • Poirot, R. L., & Wishinski, P. R. (1986). Visibility, sulfate and air mass history associated with the summertime aerosol in northern Vermont. Atmospheric Environment, 24A, 2059–2069.

    Google Scholar 

  • Poissant, L. (1999). Potential sources of atmospheric total gaseous mercury in the St. Lawrence river valley. Atmospheric Environment, 33, 2537–2547.

    Article  CAS  Google Scholar 

  • Sasaki, Y. (1958). An objective analysis based on the variational method. Journal of the Meteorological Society of Japan, 36, 77–88.

    Google Scholar 

  • Seibert, P., Kromp-Kolb, H., Baltensperger, U., Jost, D. T., Schwikowski, M., et al. (1994). Trajectory analysis of high alpine air pollution data. In S. E. Grying & M. M. Millan (Eds.), Air pollution modeling and its application X (pp. 595–596). New York: Plenum.

    Chapter  Google Scholar 

  • Silibello, C., Calori, G., Brusasca, G., Giudici, A., Angelino, E., Fossati, G., Peroni, E., Buganza, E., et al. (2008). Modeling of PM10 concentrations over Milano urban area using two aerosol modules. Environmental Modeling Software, 23, 333–343.

    Article  Google Scholar 

  • Stohl, A. (1996). Trajectory statistics−a new method to establish source–receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmospheric Environment, 30, 579–587.

    Article  CAS  Google Scholar 

  • Stohl, A., & Kromp-Kolb, H. (1994). Origin of ozone in Vienna and surroundings, Austria. Atmospheric Environment, 28, 1255–1266.

    Article  CAS  Google Scholar 

  • Taiwan Environmental Protection Administration. (2007). Taiwan Emission Database System (version 6.1).

  • Tsai, J. H., Hsu, Y. C., Yang, J. Y., et al. (2004). The relationship between volatile organic profiles and emission sources in ozone episode region—a case study in Southern Taiwan. Science of the Total Environment, 328, 131–142.

    Article  CAS  Google Scholar 

  • Virkkula, A., Makinen, M., Hillamo, R., et al. (1995). Atmospheric aerosol in the Finnish Arctic: number concentrations, chemical characteristics and source analysis. Water, Air, and Soil Pollution, 85, 1997–2002.

    Article  CAS  Google Scholar 

  • Xie, Y. L., Hopke, P. K., Paatero, P., Barrie, L. A., Li, S. M., et al. (1999). Locations and preferred pathways of possible sources of arctic aerosol. Atmospheric Environment, 33, 2229–2239.

    Article  CAS  Google Scholar 

  • Ying, Q., & Kleeman, M. J. (2006). Source contributions to the regional distribution of secondary particulate matter in California. Atmospheric Environment, 40, 736–752.

    Article  CAS  Google Scholar 

  • Ying, Q., Fraser, M. P., Graffin, R. J., Chen, J., Kleeman, M. J., et al. (2007). Verification of a source-oriented externally mixed air quality model during a severe photochemical smog episode. Atmospheric Environment, 41, 1521–1538.

    Article  CAS  Google Scholar 

  • Yu, T. Y., & Chang, L. F. W. (2000). Selection of the scenarios of ozone pollution at southern Taiwan area utilizing principal component analysis. Atmospheric Environment, 34, 4499–4509.

    Article  CAS  Google Scholar 

  • Yu, T. Y., Lin, C. Y., Chang, L. F. W., et al. (2012). Estimating air pollutant emission factors from open burning of rice straw by the residual mass method. Atmospheric Environment, 54, 428–438.

    Article  CAS  Google Scholar 

  • Zeng, Y., & Hopke, P. K. (1989). A study of acid precipitation in Ontario, Canada. Atmospheric Environment, 23, 1499–1509.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Research Grant contract NSC 93-2211-E-267-003 from the National Science Council, Taiwan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Yi Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, TY. Identification of source regions of PM10 with backward trajectory-based statistical models during PM10 episodes. Environ Monit Assess 185, 6465–6475 (2013). https://doi.org/10.1007/s10661-012-3038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3038-6

Keywords

Navigation