Skip to main content
Log in

Biosorption properties of Morus alba L. for Cd (II) ions removal from aqueous solutions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The abundantly available industrial waste product Morus alba L. pomace (MAP) is one of the cost-effective biosorbent for removal of metal ions from aqueous solutions. Hence, in the present study, we aimed to test the ability of MAP to remove Cd(II) ions through batch biosorption process. Firstly, MAP was characterized using several techniques, and then the influence of various experimental parameters such as initial pH of the aqueous solution, initial Cd(II) concentration, contact time, MAP concentration, and temperature were evaluated upon the biosorption process. It was found that the maximum uptake of Cd(II) ions occurred at initial pH 6.0 and optimum contact time was observed as 60 min. Cd(II) ions adsorption on MAP analyzed by the Langmuir and Freundlich isotherm models and the maximum monolayer biosorption capacity of MAP was found to be 21.69 mg g−1 by using the Langmuir isotherm model. The pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models were employed to describe the biosorption kinetics. In order to investigate the thermodynamic properties of the biosorption process, the changes in the Gibbs free energy (∆G), enthalpy (∆H), and entropy (∆S) were also evaluated and it has been concluded that the process was feasible, spontaneous, and endothermic in the temperature range of 5–40 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aci, F., Nebioglu, M., Arslan, M., Imamoglu, M., Zengin, M., & Kucukislamoglu, M. (2008). Preparation of activated carbon from sugar beet molasses and adsorption of methylene blue. Fresenius Environmental Bulletin, 17(8A), 997–1001.

    CAS  Google Scholar 

  • Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98, 2243–2257.

    Article  CAS  Google Scholar 

  • Akar, T., Kaynak, Z., Ulusoy, S., Yuvaci, D., Ozsari, G., & Tunali-Akar, S. (2009). Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials, 163, 1134–1141.

    Article  CAS  Google Scholar 

  • APHA, American Public Health Association. (1985). Standard methods for the examination of water and wastewater (18th ed.). Washington, DC: American Public Association.

    Google Scholar 

  • Asma, S., Waheed, A. M., & Muhammed, I. (2005). Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45, 25–31.

    Article  Google Scholar 

  • ATSDR. (1999). Agency for toxic substances and disease registry, toxicological profiles. Atlanta: Department of Health and Human Services, Public Health Service.

    Google Scholar 

  • Bhat, S. V., Melo, J. S., Chaugule, B. B., & D’Souza, S. F. (2008). Biosorption characteristics of uranium (VI) from aqueous medium onto Catenella repens, a red alga. Journal of Hazardous Materials, 158, 628–635.

    Article  CAS  Google Scholar 

  • Boehm, H. P. (2002). Surface oxides on carbon and their analysis: a critical assessment. Carbon, 40, 145–149.

    Article  CAS  Google Scholar 

  • Briand, L. E., Farneth, W. E., & Wachs, I. E. (2000). Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts: I. Fundamentals of the methanol chemisorption technique and application to monolayer supported molybdenum oxide catalysts. Catalysis Today, 62, 219–229.

    Google Scholar 

  • Cheung, C. W., Porter, J. F., & McKay, G. (2001). Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Research, 35, 605–612.

    Article  CAS  Google Scholar 

  • Chong, K. H., & Volesky, B. (1995). Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnology and Bioengineering, 47, 1–10.

    Article  Google Scholar 

  • Elouear, Z., Bouzid, J., & Boujelben, N. (2009). Removal of nickel and cadmium from aqueous solutions by sewage sludge ash: study in single and binary systems. Environmental Technology, 30, 561–570.

    Article  CAS  Google Scholar 

  • Forstner, U., & Wittman, C. T. W. (1981). Metal pollution in the aquatic environment. New York: Springer.

    Book  Google Scholar 

  • Freundlich, H. M. F. (1906). Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Ghodbane, I., Nouri, L., Hamdaoui, O., & Chiha, M. (2008). Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark. Journal of Hazardous Materials, 152(1), 148–158.

    Article  CAS  Google Scholar 

  • Guillen-Jimenez, F. M., Netzahuatl-Munoz, A. R., Morales-Barrera, L., & Cristiani-Urbina, E. (2009). Hexavalent chromium removal by Candida sp. in a concentric drafttube airlift bioreactor. Water Air Soil Pollution, 204, 43–51.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Khan, M. N., & Wahab, M. F. (2007). Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. Journal of Hazardous Materials, 141, 237–244.

    Article  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substance. Kung Sven. Veten. Hand., 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Li, X., Tang, Y., Cao, X., Lu, D., Luo, F., & Shao, W. (2008). Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 512–521.

    Article  CAS  Google Scholar 

  • Liu, Y. G., Wang, X., Zeng, G. M., Qu, D., Gu, J. J., Zhou, M., & Chai, L. Y. (2007). Cadmium-induced oxidative stress and response of the ascorbate–glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere, 69, 99–107.

    Article  CAS  Google Scholar 

  • Masamune, S., & Smith, J. M. (2004). Adsorption of ethyl alcohol on silica gel. AICHE Journal, 11(1), 41–45.

    Article  Google Scholar 

  • Megateli, S., Semsari, S., & Couderchet, M. (2009). Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicology and Environmental Safety, 72, 1774–1780.

    Article  CAS  Google Scholar 

  • Nagpal, U. M. K., Bankar, A. V., Pawar, N. J., Kapadnis, B. P., & Zinjarde, S. S. (2011). Equilibrium and kinetic studies on biosorption of heavy metals by leaf powder of paper mulberry (Broussonetia papyrifera). Water, Air, and Soil Pollution, 215, 177–188.

    Article  CAS  Google Scholar 

  • Ozcan, A., Ozcan, A. S., Tunali, S., Akar, T., & Kiran, I. (2005). Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum. Journal of Hazardous Materials, 124, 200–208.

    Article  Google Scholar 

  • Ozdes, D., Duran, C., & Senturk, H. B. (2011). Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. Journal of Environmental Management, 92, 3082–3090.

    Article  CAS  Google Scholar 

  • Ozer, C., Imamoglu, M., Turhan, Y., & Boysan, F. (2012). Removal of methylene blue from aqueous solutions using phosphoric acid activated carbon produced from hazelnut husks. Toxicological and Environmental Chemistry, 94, 1283–1293.

    Article  CAS  Google Scholar 

  • Rehman, A., & Anjum, M. S. (2011). Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environmental Monitoring and Assessment, 174, 585–595.

    Article  CAS  Google Scholar 

  • Reddad, Z., Gerente, C., Andres, Y., & Le Cloirec, P. (2002). Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environmental Science and Technology, 36(9), 2067–2073.

    Article  CAS  Google Scholar 

  • Smith, J. M., & Van Ness, H. C. (1987). Introduction to chemical engineering thermodynamics (4th ed.). Singapore: McGraw-Hill.

    Google Scholar 

  • Verougstraete, V., Lison, D., & Hotz, P. (2002). A systematic review of cytogenetic studies conducted in human populations exposed to cadmium compounds. Mutation Research, 511, 15–43.

    Article  CAS  Google Scholar 

  • Vimala, R., & Das, N. (2009). Biosorption of cadmium(II) and lead(II) from aqueous solutions by using mushrooms: a comparative study. Journal of Hazardous Materials, 168, 376–382.

    Article  CAS  Google Scholar 

  • Walker, G. M., & Weatherley, L. R. (2001). Adsorption of dyes from aqueous solution—the effect of adsorbent pore size distribution and dye aggregation. Chemical Engineering Journal, 83, 201–206.

    Article  CAS  Google Scholar 

  • Weber, W. J., Jr., & Morriss, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitary Engineering Division, American Society of Civil Engineers, 89, 31–60.

    Google Scholar 

  • World Health Organization. (1993). Guidelines for Drinking Water Quality, second ed., vol. 1., Geneva.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celal Duran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serencam, H., Ozdes, D., Duran, C. et al. Biosorption properties of Morus alba L. for Cd (II) ions removal from aqueous solutions. Environ Monit Assess 185, 6003–6011 (2013). https://doi.org/10.1007/s10661-012-3001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3001-6

Keywords

Navigation