Skip to main content
Log in

Physicochemical and ecotoxicological based assessment of bottom sediments from the Luján River basin, Buenos Aires, Argentina

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The physicochemical analysis of bottom sediments of the Lujan River was done on samples from 14 sites situated along its course and covered grain size and organic matter, total N and P, sulfides, heavy metals, organochlorine, and pyrethroid pesticides. In addition, acute 10-day whole-sediment laboratory toxicity tests were carried with each sample, using the native amphipod Hyalella curvispina as test organism. In order to correlate both types of results, data were assessed by multivariate analysis, including principal component analysis (PCA). The physicochemical profile of samples resulted similar along the river course, though several anomalous data were registered in the middle course of the river, mainly in samples taken downstream a large industrial complex; with a few exceptions in upper basin sites characterized by the dominance of agricultural activities, the pesticides concentration were consistently below the analytical detection limits. Almost 50 % of the samples induced adverse effects on the amphipod when testing sublethal and lethal end points. The toxicity of the samples in terms of survival rate was extremely high in two sites, in particular in samples taken downstream the Pilar industrial complex. The integration of a selection of physicochemical and toxicological parameters of the sediments by PCA allowed discriminating areas of the river basin according the type and intensity of their particular pollution condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade, M.I. (1986). Factores de deterioro ambiental en la cuenca del Río Luján. Buenos Aires: Contribución del Instituto de Geografía, Facultad de Filosofía y Letras (UBA), 224 p.

  • Anguiano, O. L., Ferrari, A., Soleño, J., Martínez, M. C., Venturino, A., Pechen de D'Angelo, A. M., & Montagna, C. M. (2008). Enhanced esterase activity and resistance to azinphosmethyl in target and nontarget organisms. Environmental Toxicology and Chemistry, 27, 2117–2123.

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF. (1998). Standard methods for examination of water and wastewater. Washington, DC: American Public Health Association.

  • ASTM. (1999). Standard test methods for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. E1706-95b. In Annual book of ASTM standards, Vol. 11.05, Philadelphia, PA.

  • ASTM. (2002). Standard guide for collection, storage, characterization, and manipulation of sediments for toxicological testing, E1391-02. West Conshohocken: ASTM.

  • Bartlett, A. J., Borgmann, U., Dixon, D. G., Batchelor, S. P., & Maguire, R. J. (2004). Accumulation of tributyltin in Hyalella azteca as an indicator of chronic toxicity: survival, growth, and reproduction. Environmental Toxicology and Chemistry, 23, 2878–2888.

    Article  Google Scholar 

  • Blaise, C. & Férard, J.-F (eds.) (2005). Small-scale freshwater toxicity investigations, Vol. 2. Berlin: Springer.

  • Burton, G.A. (2002). Sediment quality criteria in use around the world. Limnology, 3, 65–75.

    Google Scholar 

  • Black, C. A. (1965). Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison: American Society of Agronomy, 770 p.

  • Burton, P. A., & Landrum, P. F. (2003). Encyclopedia of sediments and sedimentary rocks. In G. V. Middleston, M. J. Church, M. Corigilo, L. A. Hardie, & F. J. Longstaffe (Eds.), Toxicity of sediments (pp. 748–751). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Briano, L., Fritzche, F., & Vio, M. (2003). El lugar de la industria. Parques industriales de la Región. Metropolitana. Revista Eure, 29, 109–135.

    Google Scholar 

  • CEQG. (2002). Summary of existing Canadian Environmental Quality Guidelines. www.ccme.ca/assets/pdf/e1_06.pdf

  • Day, P. (1965). Particle fractionation and particle size analysis methods of soil analysis. In C. Black (Ed.), Methods of soil analysis, part I (pp. 545–566). Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Di Marzio, W. D., Sáenz, M., Alberdi, J., Tortorelli, M., & Galassi, S. (2005). Risk assessment of domestic and industrial effluents unloaded into a fresh water environment. Ecotoxicology and Environmental Safety, 61, 380–391.

    Article  Google Scholar 

  • Folk, R. L. (1954). The distinction between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology, 62, 344–359.

    Article  CAS  Google Scholar 

  • Galar-Martínez, M., Gómez-Oliván, L. M., Amaya-Chávez, A., & Vega-López, A. (2008). Responses of three benthic organisms (Hyallela azteca, Limnodrillus hoffmeisteri and Stagnicola attenuata) to natural sediment spiked with zinc when exposed in single or multi-species test systems. Aquatic Ecosystem Health and Management, 11(4), 432–440.

    Article  Google Scholar 

  • García, M. E., Rodrigues-Capítulo, A., & Ferrari, L. (2010). Age-related differential sensitivity to cadmium in Hyalella curvispina (Amphipoda) and implications in ecotoxicity studies. Ecotoxicology and Environmental Safety, 73, 771–778.

    Article  Google Scholar 

  • Giorgi, A. D. N., García, M. E., Feijoó, C. S., Cuevas, W. O., & Gómez Vázquez, A. (2000). Estudio comparativo de los principales arroyos afluentes del río Luján (Argentina). In J. E. Péfaur (Ed.), Ecología Latinoamericana (pp. 99–105). Mérida: Universidad de Los Andes.

    Google Scholar 

  • Giusto, A., & Ferrari, L. (2008). Copper toxicity on juveniles of Hyalella pseudoazteca Gonzalez and Watling, 2003. Bulletin of Environmental Contamination and Toxicology, 81, 169–173.

    Article  CAS  Google Scholar 

  • Guichón, M. L., Angelini, M., Benitez, A., Serafini, C., & Cassini, M. H. (1999). Caracterización ambiental de la cuenca del río Luján. Revista de Teledetección (España), 11, 5–12.

    Google Scholar 

  • Ingersoll, C. G., Macdonald, D. D., Brumbaugh, W. G., Johnson, B. T., Kemble, N. E., & Kunz, J. L. (2002). Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in Northwestern Indiana, USA. Archives of Environmental Contamination and Toxicology, 43, 156–167.

    Article  CAS  Google Scholar 

  • Jergentz, S., Mugni, H., Bonetto, C., & Schulz, R. (2004). Runoff-related endosulfan contamination and aquatic macroinvertebrate response in rural basins near Buenos Aires, Argentina. Archives of Environmental Contamination and Toxicology, 46, 345–352.

    Article  CAS  Google Scholar 

  • Kwok, C. K., Yang, S. M., Mak, N. K., Wong, C. K. C., Liang, Y., Leung, S. Y., Young, L., & Wong, M. H. (2010). Ecotoxicological study on sediments of Mai Po marshes, Hong Kong using organisms and biomarkers. Ecotoxicology and Environmental Safety, 73, 541–549.

    Article  CAS  Google Scholar 

  • Landrum, P. F., & Robbins, J. A. (1990). Bioavailability of sediment-associated contaminants to benthic invertebrates. In R. Baudo, J. P. Giesy, & H. Muntau (Eds.), Sediments: chemistry and toxicity of in-place pollutants (pp. 237–263). Ann Arbor: Lewis.

    Google Scholar 

  • Lee, B.-G., Lee, J.-S., Luoma, S. N., Choi, H. J., & Koh, C.-H. (2000). Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments. Environmental Science and Technology, 34, 4517–4523.

    Article  CAS  Google Scholar 

  • Lobos J., Rodríguez, A. & Sabels, J. (2006). Evaluación de la Calidad de las Aguas de la Cuenca del Río Lujan. Convenio de Colaboración Técnica “Municipalidad de Luján, Comisión de Ecología y Medioambiente de la Cámara de Diputados de la provincia de Buenos Aires-Instituto Nacional del Agua”.

  • Lombardo, R., O’Farrell, I., & dos Santos Afonso, M. (2009). Spatial and temporal ion dynamics on a complex hydrological system: the Lower Luján River (Buenos Aires, Argentina). Aquatic Geochemistry, 16, 293–309. doi:10.1007/s10498-009-9064-5.

    Article  Google Scholar 

  • Losso, C., Arizzi Novelli, A., Picone, M., Marchetto, D., Pessa, G., Molinaroli, E., Ghetti, P. F., & Volpi Ghirardini, A. (2004). Evaluation of surficial sediment toxicity and sediment physicochemical characteristics of representative sites in the Lagoon of Venice (Italy). Journal of Marine Systems, 51, 281–292.

    Article  Google Scholar 

  • Marino, D., & Ronco, A. E. (2005). Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bulletin of Environmental Contamination and Toxicology, 75, 820–826.

    Article  CAS  Google Scholar 

  • Milani, D., Reynoldson, T. B., Borgmann, U., & Kolasa, J. (2003). The relative sensitivity of four benthic invertebrates to metals in spiked-sediment exposures and application to contaminated field sediment. Environmental Toxicology and Chemistry, 22, 845–854.

    Article  CAS  Google Scholar 

  • Mugni, H., Ronco, A., & Bonetto, C. (2011). Insecticide toxicity to Hyalella curvispina in runoff and stream water within a soybean farm (Buenos Aires, Argentina). Ecotoxicology and Environmental Safety, 74, 350–4.

    Article  CAS  Google Scholar 

  • OECD (Organization for Economic Co-operation and Development). (2004). Sedimentwater chironomid toxicity test using spiked sediment. Guideline for testing of chemicals No. 218. Paris: Organization for Economic Co-operation and Development.

  • O’Farrell, I., Lombardo, L., De Tezanos Pinto, E., & Loez, C. (2002). The assessment of water quality in the Lower Lujan River (Buenos Aires, Argentina): phytoplankton and algal bioassays. Environmental Pollution, 120, 207–218.

    Article  Google Scholar 

  • Peluso, L., Giusto, A., Bulus Rossini, G. D., Ferrari, L., Salibián, A., & Ronco, A. E. (2011). Hyalella curvispina (Amphipoda ) as a test organism in laboratory toxicity testing of environmental samples. Fresenius Environmental Bulletin, 20, 372–376.

    CAS  Google Scholar 

  • Peluso, L., Salibián, A. & Ronco, A. (2012). Toxicity and bioavailability of mercury in spiked sediments on Hyalella curvispina Shoemaker, 1942. International Journal of Environmental and Health, in press.

  • Pizarro, H. & Alemanni, E.E. (2005). Variables físico-químicas del agua y su influencia en la biomasa del perifiton en un tramo inferior del Río Luján (Provincia de Buenos Aires). Ecología Austral, 15, 73–88.

    Google Scholar 

  • Quinn, G.P. & Keough, M.J. (2002). Experimental design and data for biologists. Cambridge: Cambridge University Press, 537 pp.

  • Riba, I., Casado-Martínez, M. C., Forja, J. M., & DelValls, T. (2004). Sediment quality in the Atlantic coast of Spain. Environmental Toxicology and Chemistry, 23, 271–282.

    Article  CAS  Google Scholar 

  • Rodríguez, A., Ruggerio, C. & Fernández, L. (2008). Actividades productivas en la cuenca del río Luján. Su impacto sobre el agua. Revista Dlocal Nº5, CEDet, UNSAM.

  • Ronco, A. E., Peluso, M. L., Jurado, M., Bulus Rossini, G., & Salibián, A. (2008). Screening of sediment pollution in tributaries from the southwestern coast of the Río de la Plata estuary. Latin American Journal of Sediment Basin Analysis, 15, 129–142.

    Google Scholar 

  • Sala, J.M. (1972). Contribución al conocimiento geohidrológico de la porción oriental de la cuenca del río Luján y las correspondientes a los arroyos Escobar, Garin, Claro y de Las Tunas. Consejo Federal de Inversiones, 1–49, EASNE, Buenos Aires.

  • Sprovieri, M., Feo, M. L., Prevedello, L., Manta, D. S., Sammartino, S., Tamburrino, S., & Marsella, E. (2007). Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy). Chemosphere, 67, 998–1009.

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency). (1996). Method 9030 (acid-soluble and acid-insoluble sulfides: distillation), 3050 (acid digestion of sediments, sludges and soils), 3550 (ultrasonic extraction) and 3620 (clean-up procedure). Test methods for evaluating solid waste, vol. 1B: laboratory manual, physical/chemical methods (SW-846) (3rd ed.). Washington, DC: US Government Printing Office (Update 3, Revision 0).

  • USEPA (Environmental Protection Agency). (2000). Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd Ed. Office of Science and Technology Office of Water. Report: EPA 600/R-99/064.

  • Venturino, A., Montagna, C.M. & De D'Angelo, A.M.P. (2007). Risk assessment of Magnacide-« H herbicide at Río Colorado irrigation channels (Argentina). Tier 3: Studies on native species. Environmental Toxicology and Chemistry, 26, 176–182.

  • Zar, J. H. (2010). Biostatistical analysis. Upper Saddle River: Prentice-Hall. 944pp.

    Google Scholar 

Download references

Acknowledgments

The research was supported by a grant from CONICET PIP 0410 and the Secretaría de Ambiente y Desarrollo Sustentable de Nación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Ronco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peluso, L., Bulus Rossini, G., Salibián, A. et al. Physicochemical and ecotoxicological based assessment of bottom sediments from the Luján River basin, Buenos Aires, Argentina. Environ Monit Assess 185, 5993–6002 (2013). https://doi.org/10.1007/s10661-012-3000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3000-7

Keywords

Navigation