Skip to main content
Log in

Heavy metal contamination in a vulnerable mangrove swamp in South China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Concentrations of six heavy metals (Cu, Ni, Zn, Cd, Cr, and Pb) in sediments and fine roots, thick roots, branches, and leaves of six mangrove plant species collected from the Futian mangrove forest, South China were measured. The results show that both the sediments and plants in Futian mangrove ecosystem are moderately contaminated by heavy metals, with the main contaminants being Zn and Cu. All investigated metals showed very similar distribution patterns in the sediments, implying that they had the same anthropogenic source(s). High accumulations of the heavy metals were observed in the root tissues, especially the fine roots, and much lower concentrations in the other organs. This indicates that the roots strongly immobilize the heavy metals and (hence) that mangrove plants possess mechanisms that limit the upward transport of heavy metals and exclude them from sensitive tissues. The growth performance of propagules and 6-month-old seedlings of Bruguiera gymnorhiza in the presence of contaminating Cu and Cd was also examined. The results show that this plant is not sufficiently sensitive to heavy metals after its propagule stage for its regeneration and growth to be significantly affected by heavy metal contamination in the Futian mangrove ecosystem. However, older mangrove seedlings appeared to be more metal-tolerant than the younger seedlings due to their more efficient exclusion mechanism. Thus, the effects of metal contamination on young seedlings should be assessed when evaluating the risks posed by heavy metals in an ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agoramoorthy, G., Chen, F., & Hsu, M. (2008). Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution, 155, 320–326.

    Article  CAS  Google Scholar 

  • Ahmed, K., Mehedi, Y., Haque, R., & Mondol, P. (2011). Heavy metal concentrations in some macrobenthic fauna of the Sundarbans mangrove forest, south west coast of Bangladesh. Environmental Monitoring and Assessment, 177, 505–514.

    Article  CAS  Google Scholar 

  • Alberts, J. J., Price, M. Y., & Kania, M. (1990). Metal concentrations in tissues of Spartina alterniflora (Loisel) and sediments of Georgia salt marshes. Estuarine, Coastal and Shelf Science, 30, 47–58.

    Article  CAS  Google Scholar 

  • Arao, T., Ae, N., Sugiyama, M., & Takahashi, M. (2003). Genotypic differences in cadmium uptake and distribution in soybeans. Plant and Soil, 251, 247–253.

    Article  CAS  Google Scholar 

  • Basak, U. C., Das, A. B., & Das, P. (1996). Chlorophylls, carotenoids, proteins and secondary metabolites in leaves of 14 species of mangrove. Bulletin of Marine Science, 58, 654–659.

    Google Scholar 

  • Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., et al. (2009). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150, 307–322.

    Article  CAS  Google Scholar 

  • Cheng, H., Liu, Y., Tam, N. F. Y., Wang, X., Li, S. Y., Chen, G. Z., et al. (2010). The role of radial oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings. Environmental Pollution, 158, 1189–1196.

    Article  CAS  Google Scholar 

  • Cuong, D. T., Bayen, S., Wurl, O., Subramanian, K., Wong, K. K. S., Sivasothi, N., et al. (2005). Heavy metal contamination in mangrove habitats of Singapore. Marine Pollution Bulletin, 50, 1713–1738.

    Article  Google Scholar 

  • Dahmani-Muller, H., van Oort, F., Gélie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109, 231–238.

    Article  CAS  Google Scholar 

  • Das, S., & Vincent, J. R. (2009). Mangroves protected villages and reduced death toll during Indian super cyclone. Proceedings of the National Academy of Sciences of the United States of America, 106, 7357–7360.

    Article  CAS  Google Scholar 

  • De Filippis, L. F., & Pallaghy, C. K. (1994). Heavy metals: Sources and biological effects. In L. C. Rai, J. P. Caur, & C. J. Soeder (Eds.), Algae and water pollution: Advances in limnology series (pp. 32–77). Stuttgart: Schweizerbart.

    Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40.

    Article  CAS  Google Scholar 

  • Essien, J. P., Antai, S. P., & Olajire, A. A. (2009a). Distribution, seasonal variations and ecotoxicological significance of heavy metals in sediments of Cross River Estuary mangrove swamp. Water, Air, and Soil Pollution, 197, 91–105.

    Article  CAS  Google Scholar 

  • Essien, J. P., Essien, V., & Olajire, A. A. (2009b). Heavy metal burdens in patches of asphyxiated swamp areas within the Qua Iboe estuary mangrove ecosystem. Environmental Research, 109, 690–696.

    Article  CAS  Google Scholar 

  • Frías-Espericueta, M. G., Osuna-López, J. I., López-López, G., Izaguirre-Fierro, G., & Muy-Rangel, M. D. (2008). The metal content of bivalve molluscs of a coastal lagoon of NW Mexico. Bulletin of Environmental Contamination and Toxicology, 80, 90–92.

    Google Scholar 

  • Harbison, P. (1986). Mangrove muds: A sink and source for trace metals. Marine Pollution Bulletin, 17, 246–250.

    Article  CAS  Google Scholar 

  • Inskeep, W. P., & Bloom, P. R. (1985). Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80 % acetone. Plant Physiology, 77, 483–485.

    Article  CAS  Google Scholar 

  • Lefèvre, I., Marchal, G., Corréal, E., Zanuzzi, A., & Lutts, S. (2009). Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regulation, 59, 1–11.

    Article  Google Scholar 

  • Liu, X. L., Zhang, S. Z., Shan, X. Q., & Zhu, Y. G. (2005). Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere, 61, 293–301.

    Article  CAS  Google Scholar 

  • Liu, Y., Tam, N. F. Y., Yang, J. X., Pi, N., Wong, M. H., & Ye, Z. H. (2009). Mixed heavy metals tolerance and radial oxygen loss in mangrove seedlings. Marine Pollution Bulletin, 58, 1843–1849.

    Article  CAS  Google Scholar 

  • Lugo, A., & Snedaker, S. C. (1974). The ecology of mangroves. Annual Review of Ecology and Systematics, 5, 39–64.

    Article  Google Scholar 

  • Macfarlane, G. R., & Burchett, M. D. (2001). Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 42, 233–240.

    Article  CAS  Google Scholar 

  • Macfarlane, G. R., Koller, C. E., & Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere, 69, 1454–1464.

    Article  CAS  Google Scholar 

  • Marchand, C., Lallier-Vergès, E., Baltzer, F., Albéric, P., Cossa, D., & Baillif, P. (2006). Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine Chemistry, 98, 1–17.

    Article  CAS  Google Scholar 

  • Marchand, C., Allenbach, M., & Lallier-Vergès, E. (2011). Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma, 160, 444–456.

  • Moura, D. J., Péres, V. F., Jacques, R. A., & Saffi, J. (2012). Heavy metal toxicity: Oxidative stress parameters and DNA repair. In D. K. Gupta & L. M. Sandalio (Eds.), Metal toxicity in plants: Perception, signaling and remediation (pp. 187–205). Berlin: Springer.

    Chapter  Google Scholar 

  • Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–663.

    Article  CAS  Google Scholar 

  • Nobi, E. P., Dilipan, E., Thangaradjou, T., Sivakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87, 253–264.

    Article  CAS  Google Scholar 

  • Ong Che, R. G. (1999). Concentration of 7 heavy metals in sediments and mangrove root samples from Mai Po, Hong Kong. Marine Pollution Bulletin, 39, 269–279.

    Article  Google Scholar 

  • Page, A. L., Miller, R. H., & Keeney, D. R. (Eds.), (1982). Methods of Soil Analysis. Madison, Wisconsin: ASA and SSSA.

  • Parvaresh, H., Abedi, Z., Farshchi, P., Karami, M., Khorasani, N., & Karbassi, A. (2011). Bioavailability and concentration of heavy metals in the sediments and leaves of grey mangrove, Avicennia marina (Forsk.) Vierh, in Sirik Azini creek, Iran. Biological Trace Element Research, 143, 1121–1130.

    Article  CAS  Google Scholar 

  • Pekey, H. (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52, 1197–1208.

    Article  CAS  Google Scholar 

  • Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C., et al. (2010). The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS One, 5, e10095.

    Article  Google Scholar 

  • Ray, A. K., Tripathy, S. C., Patra, S., & Sarma, V. V. (2006). Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environment International, 32, 219–223.

    Article  CAS  Google Scholar 

  • Shriadah, M. M. A. (1999). Heavy metals in mangrove sediments of the United Arab Emirates shoreline (Arabian Gulf). Water, Air, and Soil Pollution, 116, 523–534.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110, 195–205.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., Li, S. H., Lan, C. Y., Chen, G. Z., Li, M. S., & Wong, Y. S. (1995). Nutrients and heavy metal contamination of plants and sediments in Futian mangrove forest. Hydrobiologia, 295, 149–158.

    Article  CAS  Google Scholar 

  • Wang, Y. T., Qiu, Q., Yang, Z. Y., Hu, Z. J., Tam, N. F. Y., & Xin, G. R. (2010). Arbuscular mycorrhizal fungi in two mangroves in South China. Plant and Soil, 331, 181–191.

    Article  CAS  Google Scholar 

  • Wang, Y. T., Huang, Y. L., Qiu, Q., Xin, G. R., Yang, Z. Y., & Shi, S. H. (2011). Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS One, 6, e24512.

    Article  CAS  Google Scholar 

  • Yan, Z. Z., Ke, L., & Tam, N. F. Y. (2010). Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquatic Botany, 92, 112–118.

    Article  CAS  Google Scholar 

  • Yang, Q., Tam, N. F. Y., Wong, Y. S., Luan, T. G., Su, W. S., Lan, C. Y., et al. (2008). Potential use of mangrove as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Marine Pollution Bulletin, 57, 735–743.

    Article  CAS  Google Scholar 

  • Yeh, H. C., Chen, I. M., Chen, P., & Wang, W. H. (2009). Heavy metal concentrations of the soldier crab (Mictyris brevidactylus) along the inshore area of Changhua, Taiwan. Environmental Monitoring and Assessment, 153, 103–109.

    Google Scholar 

  • Young, L., & Melville, D. S. (1993). Conservation of the Deep Bay environment. In B. Morton (Ed.), The marine biology of the South China Sea (pp. 211–231). Hong Kong: Hong Kong University Press.

    Google Scholar 

  • Zhang, J., Liu, J., Ouyang, Y., Liao, B., & Zhao, B. (2010). Removal of nutrients and heavy metals from wastewater with mangrove Sonneratia apetala Buch-Ham. Ecological Engineering, 36, 807–812.

    Article  Google Scholar 

  • Zheng, W. J., Chen, X. Y., & Lin, P. (1997). Accumulation and biological cycling of heavy metal elements in Rhizophora stylosa mangroves in Yingluo Bay, China. Marine Ecology Progress Series, 159, 293–301.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (30871475 and 31071357), the Project of Science and Technology of Guangdong Province (2010B020311005), and the Reserve Key Project of Sun Yat-sen University, Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (C10438), and Foundation from Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, Sun Yat-sen University (KLB11006), and the Open Research Fund Program from the Guangdong Key Laboratory of Plant Resources (plant01k15). We thank Li Meng-ying and Wang Xin-ya (Sun Yat-sen University, Guangzhou, China) for their generous help in sampling and analyzing heavy metals. We also thank Prof. Lars Olof Björn (Lund University, Sweden) and the anonymous reviewers for their thoughtful advice regarding our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Xin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 822 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Qiu, Q., Xin, G. et al. Heavy metal contamination in a vulnerable mangrove swamp in South China. Environ Monit Assess 185, 5775–5787 (2013). https://doi.org/10.1007/s10661-012-2983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2983-4

Keywords

Navigation