Skip to main content

Advertisement

Log in

Does stream water chemistry reflect watershedcharacteristics?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, we investigated the relationships between stream water chemistry and watershed characteristics (topography—mean altitude and slope; climate—mean annual temperature and precipitation; geology—geochemical reactivity; land cover; inhabitation—population density, road density and number of municipalities). We analyzed the concentrations of the major anions (Cl, F, NO3, SO4, SiO2), cations (Ca, Mg, Na, K, Mn, Fe, Al), trace elements (Li, Sr, Cu), ABS245, TDP (total dissolved phosphorus), pH, and conductivity at 3,220 diverse watersheds covering a wide variety of watershed characteristics in the Czech Republic. We used marginal and partial multivariate analyses to reveal the most important variables. The partial analysis showed that only 14 % of the variance could be assigned to a specific factor and that 41 % of the variance is shared among the factors, which indicated complex interactions between the watershed characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamová, M. (1991). Geochemical reactivity of rocks—important environmental factor (Geochemická reaktivita hornin—významný faktor životního prostředí. Geologický průzkum, 5, 139–140 (in Czech).

    Google Scholar 

  • Ahearn, D. S., Sheibley, R. W., Dahlgren, R. A., Anderson, M., Johnson, J., & Tate, K. W. (2005). Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 313, 234–247.

    Article  CAS  Google Scholar 

  • Allan, J. D. (2004). Landscapes and river scapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–284.

    Article  Google Scholar 

  • Arheimer, B., & Lindél, R. (2000). Nitrogen and phosphorus concentrations from agricultural catchments—influence of spatial and temporal variables. Journal of Hydrology, 227, 140–159.

    Article  CAS  Google Scholar 

  • Bengraïne, K., & Marhaba, T. F. (2003). Using principal component analysis to monitor spatial and temporal changes in water quality. Journal of Hazardous Materials, B100, 179–195.

    Article  Google Scholar 

  • Cameron, E. M. (1996). Hydrogeochemistry of the Fraser River, British Columbia: seasonal variation in major and minor components. Journal of Hydrology, 182, 209–225.

    Article  CAS  Google Scholar 

  • Chloupek, O., Hrstkova, P., & Schweigert, P. (2004). Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilization over 75 years in the Czech republic in comparison to some European countries. Field Crops Research, 85, 167–190.

    Article  Google Scholar 

  • Close, M. E., & Davies-Colley, R. J. (1990). Baseflow water chemistry in New Zealand rivers. 2. Influence of environmental factors. New Zealand Journal of Marine and Freshwater Research, 24, 343–356.

    Article  CAS  Google Scholar 

  • Dahl, I., Hagebo, E. (2011). Intercomparison 1125 (pH, Conductivity, Alkalinity, NO3-N, Cl, SO4, Ca, Mg, Na, K, TOC, Ale, Fe, Mn, Cd, Pb, Cu, Ni and Zn. International cooperative programm on assesment and monitoring of acidifcation of rivers and lakes. Report No. 107/2011. Norwegian Institute for Water Research, Oslo, Norway, 75 p.

  • Dow, C. L., Arscott, D. B., & Newbold, J. D. (2006). Relating major ions and nutrients to watershed conditions across a mixed-use, water-supply watersheds. Journal of the North American Benthological Society, 25(4), 887–911.

    Article  Google Scholar 

  • Drever, J. I. (1988). The geochemistry of natural waters (2nd ed., p. 437). Englewood Cliffs, New Jersey: Prentice Hall.

    Google Scholar 

  • Drever, J. I., & Zobrist, J. (1992). Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps. Geochemica et Cosmochimica Acta, 56, 3209–3216.

    Article  CAS  Google Scholar 

  • Erlandsson, M., Buffam, I., Fölster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G. A., et al. (2008). Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology, 14, 1191–1198.

    Article  Google Scholar 

  • ESRI. (2009). ArcGIS Desktop: Release 9.3. Redlands, CA: Environmental Systems Research Institute

  • Gaillardet, J., Viers, J., & Dupré, B. (2005). Trace elements in river waters. In J. I. Drever (Ed.), Surface and ground water, weathering, and soils vol. 5 treatise on geochemistry (eds. H.D. Hollan and K.K. Turekian) (pp. 225–272). Oxford: Elsevier-Pergamon.

    Google Scholar 

  • Gürtlerová, P., Dušek, P., Fikr, Š. (1997). Litogeochemical database of the Czech Geological Survey. Czech Geological Survey Report 10167, Prague (in Czech)

  • Herlihy, A. T., Stoddard, J. L., & Johnson, C. B. (1998). The Relationship Between Stream Chemistry and Watershed Land Cover Data in the Mid-Atlantic Region, U.S. Water, Air, and Soil Pollution, 105(1–2), 377–386.

    Article  CAS  Google Scholar 

  • Holloway, J. M., Dahlgren, R. A., Hansen, B., & Casey, W. H. (1998). Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature, 395, 785–788.

    Article  CAS  Google Scholar 

  • Hruska, J., & Kram, P. (2003). Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic). Hydrology and Earth System Sciences, 7(4), 525–539.

    Article  CAS  Google Scholar 

  • Humborg, C., Smedberg, E., Medina, M. R., & Morth, C. M. (2008). Changes in dissolved silicate loads to the Baltic Sea—the effects of lakes and reservoirs. Journal of Marine Systems, 73(3–4), 223–235.

    Article  Google Scholar 

  • Hunsaker, C. T., & Levine, D. A. (1995). Hierarchical approaches to the study of water quality in rivers. BioScience, 45(3), 193–203.

    Article  Google Scholar 

  • Johnson, L. B., Richards, C., Host, G. E., & Arthur, J. W. (1997). Landscape influence on water chemistry in Midwestern stream ecosystems. Freshwater Biology, 37, 193–208.

    Article  CAS  Google Scholar 

  • Jongman, R. H. G., ter Braak, C. J. F., & van Tongeren, O. F. R. (1995). Data analysis in community and landscape ecology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Kalkhoff, S. J. (1993). Using a geographic information system to determine relation between stream quality and geology in the Roberts Creek watershed, Clayton County, IOWA. Water Resources Bulletin, 29(6), 989–996.

    Article  CAS  Google Scholar 

  • King, R. S., Baker, M. E., Whigham, D. E., Weller, D. E., Jordan, T. E., Kazyak, P. F., et al. (2005). Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications, 15, 137–153.

    Article  Google Scholar 

  • Kopáček, J., & Hejzlar, J. (1993). Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. International Journal of Environmental and Analytical Chemistry, 53, 173–183.

    Article  Google Scholar 

  • Kram, P. (2010). Influence of lithology on streamwater chemistry. Geochimica et Cosmochimica Acta, 74((12), Supplement 1), A537–A537.

    Google Scholar 

  • Kram, P., & Hruska, J. (1994). Influence of bedrock geology on elemental fluxes in two forested catchments affected by high acidic deposition. Applied Hydrogeology, 2(2), 50–58.

    Article  Google Scholar 

  • Kram, P., & Hruska, J. (2010). Streamwater chemistry in three contrasting monolithologic watersheds. In P. Birkle & I. S. Torres-Alvarado (Eds.), Water-rock interaction (pp. 257–260). London: CRC Press/Balkema, Taylor & Francis Group.

    Google Scholar 

  • Kvítek, T., Žlábek, P., Bystřický, V., Fučík, P., Lexa, M., Gergel, J., et al. (2009). Changes of nitrate concentrations in surface waters influenced by land use in the crystalline complex of the Czech Republic. Physics and Chemistry of the Earth, 34(8–9), 541–551.

    Article  Google Scholar 

  • Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press, UK.

    Google Scholar 

  • Lindell, L., Åström, M., & Öberg, T. (2010). Land-use change versus natural controls on stream chemistry in the Subandean Amazon, Peru. Applied Geochemistry, 25, 485–495.

    Article  CAS  Google Scholar 

  • Liu, Z. J., Weller, D. E., Correll, D. L., & Jordan, T. E. (2000). Effects of land cover and geology on stream chemistry in watersheds of Chesapeake Bay. Journal of the American Water Resources Association, 36(6), 1349–1365.

    Article  CAS  Google Scholar 

  • Ludwig, W., Probst, J. L., & Kempe, S. (1996). Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 10(1), 23–41.

    Article  CAS  Google Scholar 

  • Meybeck, M. (2005). Global occurence of major elements in rivers. In J. I. Drever (Ed.), Surface and ground water, weathering, and soils vol. 5 treatise on geochemistry (eds. H.D. Hollan and K.K. Turekian) (pp. 207–223). Oxford: Elsevier-Pergamon.

    Google Scholar 

  • Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–540.

    Article  CAS  Google Scholar 

  • Navrátil, T., Vach, M., Norton, S. A., Skrivan, P., Hruška, J., & Maggini, L. (2003). The response of small stream in the Lesni potok forested catchment, central Czech Republic, to a short-term in-stream acidification. Hydrology and Earth System Sciences, 7(3), 411–422.

    Article  Google Scholar 

  • Nisbet, T. R., Fowler, D., & Smith, R. I. (1995). An investigation of the impact of affroestation on stream-water chemistry in the Loch Dee catchement, sw Scotland. Environmental Pollution, 90(1), 111–120.

    Article  CAS  Google Scholar 

  • Osborne, L. L., & Wiley, M. J. (1988). Empirical relationships between land-use cover and stream water-quality. Journal of Environmental Management, 26(1), 9–27.

    Google Scholar 

  • Oulehle, F., & Hruška, J. (2009). Rising trends of dissolved organic matter in drinking-water reservoirs as a result of recovery from acidification in the Ore Mts., Czech Republic. Environmental Pollution, 157(12), 3433–3439.

    Article  CAS  Google Scholar 

  • Oulehle, F., McDowell, W. H., Aitkenhead-Peterson, J. A., Krám, P., Hruška, J., Navrátil, T., et al. (2008). Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems, 11, 410–425.

    Article  CAS  Google Scholar 

  • Reimann, C., Finne, T. E., Nordgulen, Ø., Sæther, O. M., Arnoldussen, A., & Banks, D. (2009). The influence of geology and land-use on inorganic stream water quality in the Oslo region, Norway. Applied Geochemistry, 24(10), 1862–1874.

    Article  CAS  Google Scholar 

  • Rhodes, A. L., Newton, R. M., & Puffal, A. (2001). Influence of land use on water quality of a diverse New England watershed. Environmental Science and Technology, 35, 3640–3645.

    Article  CAS  Google Scholar 

  • Stålnacke, P., Vandsemb, S. M., Vassiljev, A., Grimvall, A., & Jolankai, G. (2004). Changes in nutrient levels in some Eastern European rivers in response to large-scale changes in agriculture. Water Science and Technology, 49(3), 29–36.

    Google Scholar 

  • ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). Ithaca, NY: Microcomputer Power.

    Google Scholar 

  • Tolasz, R., Míková, T., Valeriánová, A., & Voženílek, V. (Eds.). (2007). Climate atlas of Czechia. Prague: Czech Hydrometeorological Institute.

    Google Scholar 

  • Veselý, J., & Majer, V. (1996). The effect of pH and atmospheric deposition on concentration of trace elements in acidified freshwaters: a statistical approach. Water, Air, and Soil Pollution, 88, 227–246.

    Article  Google Scholar 

  • Veselý, J., & Majer, V. (1998). Hydrogeochemical mapping of Czech freshwaters. Věstník Českého geologického ústavu, 73(3), 183–191.

    Google Scholar 

  • Williard, K. W. J., Dewalle, D. R., & Edwards, P. J. (2005). Influence of bedrock geology and tree species composition on stream nitrate concentrations in mid-appalachian forested watersheds. Water, Air, and Soil Pollution, 160, 55–76.

    Article  CAS  Google Scholar 

  • Xie, X. D., Norra, S., Berner, Z., & Stüben, D. (2005). A GIS-supported multivariate statistical analysis of relationships among stream water chemistry, geology and land use in Baden-Wurttemberg, Germany. Water, Air, and Soil Pollution, 167(1–4), 39–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported primarily by the Norway and EEA Financial Mechanisms (CZ 0051), the CzechGlobe—Centre for Global Climate Change Impacts Studies, Reg. No. CZ.1.05/1.1.00/02.0073, the Research Plan AVOZ60870520 and the institutional resources of the Ministry of Education, Youth and Sports of the Czech Republic for the support of science and research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Chuman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuman, T., Hruška, J., Oulehle, F. et al. Does stream water chemistry reflect watershedcharacteristics?. Environ Monit Assess 185, 5683–5701 (2013). https://doi.org/10.1007/s10661-012-2976-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2976-3

Keywords

Navigation