Exposure assessment and associated lung deposition calculations for vehicular exhaust in four metropolitan cities of Pakistan

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ambient aerosol concentrations along the roadside of metropolitan cities of Pakistan were measured using a Grimm 1.109 dust monitor. Considering the high ambient aerosol concentrations, regional lung deposition of aerosol particles in the human respiratory tract was calculated to assess extent of exposure. Lung deposition was computed in terms of mass concentration and the associated surface area for 12 male traffic wardens using the latest version of the stochastic lung deposition code Inhalation, Deposition, and Exhalation of Aerosols in the Lung. The results have revealed 4 to 10 times higher concentrations than recommended by WHO guidelines. The deposition results derived from the model disclose that extrathoracic deposition is in the range of 22 to 28 % with total lung deposition ranging from 40 to 44 % for the scanned particle window of 0.25–10 μm. Considering an average 8-h shift per day and an average breathing rate of 1.3 m3 h−1, it is approximated that in a worker, up to 1.6 mg of inhalable particle mass can deposit per day.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alam, K., Thomas, T., & Blaschke, T. (2011a). Aerosol optical properties and radiative forcing over mega-city Karachi. Atmospheric Research, 101(3), 773–782.

    Article  CAS  Google Scholar 

  2. Alam, K., Blaschke, T., Madl, P., Mukhtar, A., Hussain, M., Thomas, T., et al. (2011b). Aerosol size distribution and mass concentration measurements in various cities of Pakistan. Journal of Environmental Monitoring. doi:10.1039/C1EM10086F.

  3. Aziz, A., & Bajwa, I. U. (2008). Erroneous mass transit system and its tended relationship with motor vehicular air pollution (an integrated approach for reduction of urban air pollution in Lahore). Environmental Monitoring and Assessment, 137, 25–33.

    Article  Google Scholar 

  4. Bailey, M. R., Ansoborlo, E., Guilmette, R. A., et al. (2008). Updating the ICRP human respiratory tract model. Radiation Protection Dosimetry, 127(1–4), 31–34.

    Google Scholar 

  5. Baldassarri, L. T., Battistelli, C. L., Conti, L., et al. (2006). Evaluation of emission toxicity of urban bus engines: compressed natural gas and comparison with liquid fuels. Science of the Total Environment, 355, 64–77.

    Article  Google Scholar 

  6. Calderón, G. L., Reed, W., Maronpot, R., et al. (2004). Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicologic Pathology, 32, 650–658.

    Article  Google Scholar 

  7. Cohen, B. S., & Asgharian, B. (1990). Deposition of ultrafine particles in the upper airways an empirical analysis. Aerosol Science and Technology, 21, 789–797.

    Google Scholar 

  8. Cohen, A. J., Krewski, D., Samet, J., et al. (2003). Health and air quality: interpreting science for decision makers. Journal of Toxicology and Environmental Health. Part A, 66, 1489–1903.

    Article  Google Scholar 

  9. Cheng, Y. S. (2003). Aerosol deposition in the extrathoracic region. Aerosol Science and Technology, 37, 659–671.

    Article  CAS  Google Scholar 

  10. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  Google Scholar 

  11. Geiser, M., & Kreyling, W. G. (2010). Deposition and biokinetics of inhaled nanoparticles. Particle and Fibre Toxicology, 7(2), 1–17.

    Google Scholar 

  12. Ghauri, B., Lodhi, A., & Mansha, M. (2007). Development of baseline (air quality) data in Pakistan. Environmental Monitoring and Assessment, 127, 237–252.

    Article  CAS  Google Scholar 

  13. Gurjar, B. R., Butler, T. M., Lawrence, M. G., et al. (2008). Evaluation of emissions and air quality in megacities. Atmospheric Environment, 42, 1593–1606.

    Article  CAS  Google Scholar 

  14. Haefeli-Bleuer, B., & Weibel, E. R. (1988). Morphometry of the human pulmonary acinus. Anatomical Record, 220, 401–414.

    Article  CAS  Google Scholar 

  15. Hankinson, J. L., Odencrantz, J. R., & Fedan, K. B. (1999). Spirometric reference values from a sample of the general U.S. population. American Journal of Respiratory and Critical Care Medicine, 159(1), 179–187.

    Article  CAS  Google Scholar 

  16. Harris, S. J., & Maricq, M. M. (2001). Signature size distributions for diesel and gasoline engine exhaust particulate matter. Journal of Aerosol Science, 32, 749–764.

    Article  CAS  Google Scholar 

  17. Hofmann, W., & Koblinger, L. (1990). Monte Carlo modeling of aerosol deposition in human lungs. Part II: Deposition fractions and their parameter variations. Journal of Aerosol Science, 21, 675–688.

    Article  Google Scholar 

  18. Hofmann, W., Asgharian, B., & Winkler-Heil, R. (2002). Modeling intersubject variability of particle deposition in human lungs. Journal of Aerosol Science, 33, 219–235.

    Article  CAS  Google Scholar 

  19. Hofmann, W., Winkler-Heil, R., & Balásházy, I. (2006). The effect of morphological variability on surface deposition densities of inhaled particles in human bronchial and acinar airways. Inhalation Toxicology, 18, 809–819.

    Article  CAS  Google Scholar 

  20. Hofmann, W., Morawska, L., Winkler-Heil, R., & Moustafa, M. (2009). Deposition of combustion aerosols in the human respiratory tract: comparison of theoretical predictions with experimental data considering nonspherical shape. Inhalation Toxicology, 21(14), 1154–1164.

    Article  CAS  Google Scholar 

  21. Hunt, A., Abraham, J. L., Judson, B., et al. (2003). Toxicologic and epidemiologic clues from the characterization of the 1952 London smog fine particulate matter in archival autopsy lung tissues. Environmental Health Perspectives, 111(9), 1209–1214.

    Article  CAS  Google Scholar 

  22. Hussain, M., Winker-Heil, R., & Hofmann, W. (2011a). Effect of intersubject variability of extrathoracic morphometry, lung airways dimensions and respiratory parameters on particle deposition. Journal of Thoracic Disease, 3, 156–170.

    Google Scholar 

  23. Hussain, M., Winker-Heil, R., & Hofmann, W. (2011b). Lung dosimetry for inhaled long-lived radionuclides and radon progeny. Radiation Protection Dosimetry. doi:10.1093/rpd/ncr060.

  24. Ingham, D. B. (1991). Diffusion of aerosol in the entrance region of a smooth symmetrical pipe. Aerosol Science and Technology, 22, 253–257.

    Article  Google Scholar 

  25. International Commission on Radiological Protection. (1994). Human respiratory tract model for radiological protection. Oxford: Elsevier. Publication 66.

    Google Scholar 

  26. Jonathan, S., & Daniel, K. (2007). Health effects associated with exposure to ambient air pollution. Journal of Toxicology and Environmental Health. Part A, 70, 227–242.

    Article  Google Scholar 

  27. Johnston, C. J., Finkelstein, J. N., Mercer, P., et al. (2000). Pulmonary effects induced by ultrafine PTEF particles. Toxicology and Applied Pharmacology, 168, 208–215.

    Article  CAS  Google Scholar 

  28. Koblinger, L., & Hofmann, W. (1990). Monte Carlo modeling of aerosol deposition in human lungs: part I: simulation of particle transport in a stochastic lung structure. Aerosol Science Technology, 21, 661–674.

    Article  Google Scholar 

  29. Lapuerta, M., Armas, O., & Gomez, A. (2003). Diesel particle size distribution estimation from digital image analysis. Aerosol Science Technology, 37, 369–381.

    Article  CAS  Google Scholar 

  30. Linnainmaa, M., Laitinen, J., Leskinen, A., et al. (2008). Laboratory and field testing of sampling methods for inhalable and respirable dust. Journal of Occupational and Environmental Hygiene, 5(1), 28–35.

    Article  Google Scholar 

  31. Madl, P., & Hussain, M. (2011). Lung deposition predictions of airborne particles and the emergence of contemporary diseases—part II. Lahore Institute of Public Health. theHealth, 2(3), 101–107.

    Google Scholar 

  32. Miller, K. A., Siscovick, D. S., Sheppard, L., et al. (2007). Long-term exposure to air pollution and incidence of cardiovascular events in women. New England Journal of Medicine, 356(5), 447–458.

    Article  CAS  Google Scholar 

  33. Morawska, L., Bofinger, N., Kocis, L., et al. (1998). Submicron and supermicron particulates from diesel vehicle emissions. Environmental Science and Technology, 32, 2033–2042.

    Article  CAS  Google Scholar 

  34. Morawska, L., Johnson, G., Ristovski, Z. D., et al. (1999). Relation between particle mass and number for submicrometer airborne particles. Atmospheric Environment, 33, 1983–1990.

    Article  CAS  Google Scholar 

  35. Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 830–831.

    Article  Google Scholar 

  36. Oanh, N. T. K., Thiansathit, W., Bond, T. C., et al. (2010). Compositional characterization of PM2.5 emitted from in-use diesel vehicles. Atmospheric Environment, 44(1), 15–22.

    Article  Google Scholar 

  37. Parekh, P. P., Khwaja, H. A., Khan, A. R., et al. (2001). Ambient air quality of two metropolitan cities of Pakistan and its health implications. Atmospheric Environment, 35, 5971–5978.

    Article  CAS  Google Scholar 

  38. Park, K., Cao, F., Kittelson, D. B., et al. (2003). Relationship between particle mass and mobility for diesel exhaust particles. Environmental Science and Technology, 37, 577–583.

    Article  CAS  Google Scholar 

  39. Pitz, M., Cyrys, J., Karg, E., et al. (2003). Variability of apparent particle density of an urban aerosol. Environmental Science and Technology, 37, 4336–4342.

    Article  CAS  Google Scholar 

  40. Pope, C. A. (2000). Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who is at risk? Environmental Health Perspectives, 108(4), 713–723.

    Article  CAS  Google Scholar 

  41. Pope, C. A., Burnett, R. T., Thun, M. J., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association, 287(9), 1132–1141.

    Article  CAS  Google Scholar 

  42. Qureshi, I. A., & Huapu, L. U. (2007). Urban transport and sustainable transport strategies: a case study of Karachi, Pakistan. Tsinghua Science and Technology, 12(3), 309–317.

    Article  Google Scholar 

  43. Raabe, O. G., Yeh, H. C., Schum G. M., et al. (1976). Tracheobronchial geometry: human, dog, rat, hamster. Lovelace Foundation Report LF-53. Albuquerque: Lovelace Foundation.

  44. Ristovski, Z., Jayaratne, E. R., Lim, M., et al. (2006). Influence of diesel fuel sulphur on the nano-particle emissions from city buses. Environmental Science and Technology, 40, 1314–1320.

    Article  CAS  Google Scholar 

  45. Schwartz, J. (2001). Air pollution and blood markers of cardiovascular risk. Environmental Health Perspectives, 109(3), 405–409.

    Article  CAS  Google Scholar 

  46. Smith, D. J. T., Harrison, R. M., Luhana, L., et al. (1996). Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atmospheric Environment, 30, 4031–4040.

    Article  CAS  Google Scholar 

  47. Stone, E., Schauer, J., Quraishi, T. A., et al. (2010). Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmospheric Environment, 44, 1062–1070.

    Article  CAS  Google Scholar 

  48. Teikari, M., Linnainmaa, M., Laitinen, J., et al. (2003). Laboratory and field testing of particle size-selective sampling methods for mineral dusts. American Industrial Hygiene Association Journal, 64(3), 312–318.

    Article  CAS  Google Scholar 

  49. The Urban Gazette (TUG) (2007). Intergrated traffic management systems, P & D Department Govt. of the Punjab. vol I, Issue2.

  50. Wiwatanadatea, P., & Liwsrisakun, C. (2011). Acute effects of air pollution on peak expiratory flow rates and symptoms among asthmatic patients in Chiang Mai, Thailand. International Journal of Hygiene and Environmental Health; doi: IJHEH-12453.

  51. Yeh, H. C., & Schum, G. M. (1980). Models of human lung airways and their application to inhaled particle deposition. Bulletin of Mathematical Biophysics, 42, 461–480.

    CAS  Google Scholar 

  52. Zhang, L., Asgharian, B., & Anjilvel, S. (1997). Inertial deposition of particles in the human upper airway bifurcations. Aerosol Science and Technology, 26, 97–110.

    Article  CAS  Google Scholar 

  53. Zhang, Y., Quaraishi, T., & Schauer, J. J. (2008). Daily variations in sources of carbonaceous aerosol in Lahore, Pakistan. Aerosol and Air Quality Research, 8(2), 130–146.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Renate Winker-Heil for her support in modifying and using the IDEAL code for calculations in its latest version. This work was funded in part by EU contract no.516483 (Alpha Risk) and by the Higher Education Commission of Pakistan under the scholarship program (Overseas Scholarships for Pakistani Nationals).

Conflict of interest

The authors have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hussain Majid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Majid, H., Alam, K., Madl, P. et al. Exposure assessment and associated lung deposition calculations for vehicular exhaust in four metropolitan cities of Pakistan. Environ Monit Assess 185, 5265–5276 (2013). https://doi.org/10.1007/s10661-012-2942-0

Download citation

Keywords

  • Combustion aerosols
  • Mass concentration
  • Particle surface area
  • Lung deposition