Skip to main content
Log in

Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: assessment and source recognition of petroleum hydrocarbons

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Coastal marine sediment samples were collected from ten sampling stations along the Egyptian Mediterranean coast in April 2010. All sediment samples were analyzed for aliphatic (C7 to C34) and polycyclic aromatic hydrocarbons (PAHs) as well as total organic carbon (TOC) contents and grain size analysis. Total aliphatic hydrocarbons ranged from 1621.82 to 9069.99 ng/g (dry weight), while aromatic hydrocarbons (16 PAHs) varied between 208.69 and 1020.02 ng/g with an average of 530.68 ± 225.86 ng/g dwt. Good correlations observed between certain PAH concentrations allowed to identify its origin. The average TOC percent was varied from 0.13 to 1.46 %. Principal component analysis was used to determine the sources of hydrocarbon pollutants in sediments of Mediterranean. Additionally, special PAHs compound ratios suggest the petrogenic origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aspila, K. I., Agemian, H., & Chau, A. S. Y. (1976). A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. The Analyst, 101, 187–197.

    Article  CAS  Google Scholar 

  • Bakhtiari, A. R., Zakaria, M. P., Yaziz, M. I., Lajis, M. N. H., Bi, X., Shafiee, M. R. M., & Sakari, M. (2010). Distribution of PAHs and n-alkanes in Klang River surface sediments, Malaysia. Pertanika Journal of Science & Technology, 18(1), 167–179.

    Google Scholar 

  • Baturin, G. N. (1988). Disseminated phosphorus in oceanic sediments—a review. Marine Geology, 84, 95–104.

    Article  CAS  Google Scholar 

  • Baumard, P., Budzinski, H., Michon, Q., Garrigues, P., Burgeot, T., & Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science, 47, 77–90.

    Article  CAS  Google Scholar 

  • Beolchini, F., Rocchetti, L., Regoli, F., & DelĺAnno, A. (2010). Bioremediation of marine sediments contaminated by hydrocarbons: experimental analysis and kinetic modeling. Journal of Hazardous Materials, 182, 403–407.

    Article  CAS  Google Scholar 

  • Bihari, N., Fafandel, M., Hamer, B., & Kralj-Bilen, B. (2006). AH content, toxicity and genotoxicity of coastal marine sediments from the Rovinj area, Northern Adriatic, Croatia. The Science of the Total Environment, 366(2–3), 602–611.

    Article  CAS  Google Scholar 

  • Bixiong, Y., Zhihuan, Z., & Ting, M. (2007). Petroleum hydrocarbon in surficial sediment from rivers and canals in Tianjin, China. Chemosphere, 68, 140–149.

    Article  CAS  Google Scholar 

  • Bloesch, J., Armegol, J., Giovanoli, F., & Stabel, H. H. (1988). Phosphorus in suspended and settling particulate matter of lakes. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie, 30, 84–90.

    Google Scholar 

  • Boehm, P., & Requejo, A. G. (1986). Overview of the recent sediment hydrocarbon geochemistry of Atlantic and Gulf coast outer continental shelf environments. Estuarine, Coastal and Shelf Science, 23, 29–58.

    Article  CAS  Google Scholar 

  • Bourbonniere, R. A., & Meyers, P. A. (1996). Anthropogenic influences on hydrocarbon contents of sediments deposited in eastern Lake Ontario since 1800. Environmental Geology, 28, 22–28.

    Article  CAS  Google Scholar 

  • Budzinski, H., Jones, I., Bellocq, J., Pierard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.

    Article  CAS  Google Scholar 

  • CCME. “Canadian Council of Ministers of the Environment”, Canadian sediment quality guidelines for the protection of aquatic life (http://search.yahoo.com/r/_ylt=A0oG7jw5tWFQCigAfpJXNyoA;_ylu=X3oDMTE0OWltMjZlBHNlYwNzcgRwb3MDMQRjb2xvA2FjMgR2dGlkA1ZJUDA0OV83Nw--/SIG=165qtecco/EXP=1348609465/**http%3a//www.ecy.wa.gov/programs/eap/psamp/BoundaryBay/PSAMP-BBAMP%2520documents/Canadian%2520guidelines%2520for%2520water%2520quality/SedimentProtAquaticLifeSummaryTables(en).pdf). Accessed 25 Sept 2012.

  • Chiou, C. T., McGroddy, S. E., & Kile, D. E. (1998). Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science and Technology, 32, 264–269.

    Article  CAS  Google Scholar 

  • Codispoti, L. (1989). Phosphorus versus nitrogen limitation of new and export production. In W. H. Berger et al. (Eds.), Productivity of the ocean: past and present (pp. 377–394). New York: Wiley.

    Google Scholar 

  • Colombo, J. C., Pelletier, E., Brochu, C., Khalil, M., & Catoggio, J. A. (1989). Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de La Plata Estuary, Argentina. Environmental Science and Technology, 23, 888–894.

    Article  CAS  Google Scholar 

  • Commendatore, M. G., Esteves, J. L., & Colombo, J. C. (2000). Hydrocarbons in coastal sediments of Patagonia, Argentina: levels and probable sources. Marine Pollution Bulletin, 40(11), 989–998.

    Article  CAS  Google Scholar 

  • da Luz, L. P., Filho, P. J. S., de Sousa, E. E. H., Kerstner, T., & Caramão, E. B. (2010). Evaluation of surface sediment contamination by polycyclic aromatic hydrocarbons in colony Z3—(Patos Lagoon, Brazil). Microchemical Journal, 96, 161–166.

    Article  CAS  Google Scholar 

  • de Mora, S., Tolosa, I., Fowler, S. W., Villeneuve, J.-P., Cassi, R., & Cattini, C. (2010). Distribution of petroleum hydrocarbons and organochlorinated contaminants in marine biota and coastal sediments from the ROPME Sea Area during 2005. Marine Pollution Bulletin, 60, 2323–2349.

    Article  CAS  Google Scholar 

  • Dickhut, R. M., Canuel, E. M., Gustafson, K. E., Liu, K., Arzayus, K. M., Walker, S. E., Edgecombe, G., Gaylor, M. O., & Macdonald, E. H. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay Region. Environmental Science and Technology, 34, 4635–4640.

    Article  CAS  Google Scholar 

  • Ehrhardt, M. (1987). Liophilic organic material: an apparatus for extracting solids used for their concentration from seawater. ICES Techniques in Marine Environmental Sciences, 4, 1–14.

    Google Scholar 

  • Ekpo, B. O., Oyo-Ita, O. E., Oros, D. R., & Simoneit, B. R. T. (2011). Distributions and sources of polycyclic aromatic hydrocarbons in surface sediments from the Cross River estuary, S.E. Niger Delta, Nigeria. Environmental Monitoring and Assessment. doi:10.1007/s10661-011-2019-5. published online April 2011.

  • El Nemr, A., Said, T. O., Khaled, A., El-Sikaily, A., & Abd-Allah, A. M. A. (2007). The distribution and sources of polycyclic aromatic hydrocarbons in surface sediments along the Egyptian Mediterranean coast. Environmental Monitoring and Assessment, 124, 343–359.

    Article  CAS  Google Scholar 

  • El Nemr, A. (2008). Organic hydrocarbons in surface sediments of the Mediterranean coast of Egypt: distribution and sources. Egyptian Journal of Aquatic Research, 34(3), 36–57.

    CAS  Google Scholar 

  • El Nemr, A., El-Sikaily, A., Khaled, A., Ragab, S. (2012a), Distribution patterns and risk assessment of hydrocarbons in bivalves from Egyptian Mediterranean coast. Blue Biotechnology Journal, 1(3) (in press).

  • El Nemr, A., Mohamed, F.A., El Sikaily, A., Khaled, A., Ragab, S.: (2012b), Risk assessment of organochlorine pesticides and PCBs contaminated in sediment of Lake Bardawell, Egypt. Blue Biotechnology Journal, 1(3) (in press).

  • El-Askary, M. A., Nasr, S. M., & Moussa, A. A. (1988). Geochemical approach to the beach and bottom of the Jubal area at the entrance of the Gulf of Suez, Red Sea. Bulletin of the Institute of Oceanography and Fisheries, 14(1), 105–121.

    Google Scholar 

  • Essien, J. P., Eduok, S. I., & Olajire, A. A. (2011). Distribution and ecotoxicological significance of polycyclic aromatic hydrocarbons in sediments from Iko River estuary mangrove ecosystem. Environmental Monitoring and Assessment, 176, 99–107.

    Article  CAS  Google Scholar 

  • Ficken, K. J., Li, B., Swain, D. L., & Eglinton, G. (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31, 745–749.

    Article  CAS  Google Scholar 

  • Folk, R. L. (1974). Petrology of sedimentary rocks (p. 184). Texas: Hemphill.

    Google Scholar 

  • Gearing, P., Gearing, J., Lytle, T. F., & Lytle, J. (1976). Hydrocarbons in 60 northeast Gulf of Mexico shelf sediments: a preliminary survey. Geochimica et Cosmochimica Acta, 40, 1005–1017.

    Article  CAS  Google Scholar 

  • Gschwend, P. M., & Hites, R. A. (1981). Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochimica et Cosmochimica Acta, 45, 2359–2367.

    Article  CAS  Google Scholar 

  • Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmosph. Environ., 37, 5307–5317.

    Article  CAS  Google Scholar 

  • Guo, W., He, M., Yang, Z., Lin, C., & Quan, X. (2011). Characteristics of petroleum hydrocarbons in surficial sediments from the Songhuajiang River (China): spatial and temporal trends. Environmental Monitoring and Assessment, 179, 81–92.

    Article  CAS  Google Scholar 

  • Hallet, D. J., & Brecher, R. W. (1984). Cycling of polynuclear aromatic hydrocarbons in the Great Lakes ecosystem. In J. O. Nriagu & M. S. Simmons (Eds.), Toxic contaminants in the Great Lakes (pp. 213–237). New York: Wiley.

    Google Scholar 

  • Hedges, J. I., & Prahl, F. G. (1993). Early diagenesis: consequences for applications of molecular biomarkers. In M. H. Engel & S. A. Macko (Eds.), Organic geochemistry: principles and applications (pp. 237–253). New York: Plenum Press.

    Chapter  Google Scholar 

  • Hegazi, A. H., Andersson, J. T., Abu-Elgheit, M. A., & El-Gayar, M. S. (2004). Source diagnostic and weathering indicators of tar balls utilizing acyclic, polycyclic and S-heterocyclic components. Chemosphere, 55, 1053–1065.

    Article  CAS  Google Scholar 

  • Hwang, H. M., Wade, T. L., & Sericano, J. L. (2003). Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmospheric Environment, 37, 2259–2267.

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer). (1983). IARC monographs on the evaluation of the carcinogenic risk of chemicals to human, Polynuclear aromatic compounds, Part I, Chemical, environmental, and experimental data. Geneva: World Health Organization.

    Google Scholar 

  • Jeng, W. L. (2006). Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry, 102, 242–251.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Baer, D., & Oyola, P. (2001). Source apportionment of urban aliphatic and polyaromatic aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science & Technology, 35, 2288–2294.

    Article  CAS  Google Scholar 

  • Kennicutt, M. C., II, Barker, C., Brooks, J. M., DeFreitas, D. A., & Zhu, G. H. (1987). Selected organic matter source indicators in the Orinoco, Nile and Changjiang deltas. Organic Geochemistry, 11, 41–51.

    Article  CAS  Google Scholar 

  • Khorolef, F. (1975). Determination of nutrients, determination of phosphorus. In Manual of method of aquatic environment research (pp. 117–123). Rome: FAO.

  • Kim, G. B., Maruya, K. A., Lee, R. F., Lee, J. H., Koh, C. H., & Tanabe, S. (1999). Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea. Marine Pollution Bulletin, 38, 7–15.

    CAS  Google Scholar 

  • Kuo, C.-Y., Cheng, Y.-W., Chen, Y.-W., & Lee, H. (1998). Correlation between the amounts of polycyclic aromatic hydrocarbons and mutagenicity of airborne particulate samples from Taichung City. Taiwan Environmental Research Section A, 78, 43–49.

    Article  CAS  Google Scholar 

  • Liss, P.S. (1976). Conservative and non-conservative behavior of dissolved constituents during estuarine mixing, In J. D. Burton & P.S. Liss (Eds.), Estuarine chemistry (pp. 93–130) New York: Academic.

  • Lodovici, M., Venturini, M., Marini, E., Grechi, D., & Dolara, P. (2003). Polycyclic aromatic hydrocarbons air levels in Florence, Italy, and their correlation with other air pollutants. Chemosphere, 50, 377–382.

    Article  CAS  Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Article  Google Scholar 

  • Mandalakis, M., Tsapakis, M., Tsoga, A., & Stephanou, E. G. (2002). Gas-particle concentrations and distribution of aliphatic hydrocarbons PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmospheric Environment, 36, 4023–4035.

    Article  CAS  Google Scholar 

  • Martínez-Lladó, X., Gibert, O., Martí, V., Díez, S., Romo, J., Bayona, J. M., & de Pablo, J. (2007). Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities. Environmental Pollution, 149, 104–113.

    Article  CAS  Google Scholar 

  • Mazurek, M. A., & Simoneit, B. R. T. (1984). Characterization of biogenic and petroleum-derived organic matter in aerosols over remote, rural, and urban area. In L. H. Keith (Ed.), Identification and analysis of organic pollutants in air (pp. 353–370). Woburn: Ann Arbor Science.

    Google Scholar 

  • McCready, S., Slee, G. F., Birch, G. F., & Taylor, S. E. (2000). The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Marine Pollution Bulletin, 40, 999–1006.

    Article  CAS  Google Scholar 

  • Menzie, C. A., Potocki, B. B., & Santodonato, J. (1992). Exposure to carcinogenic PAHs in the environment. Environmental Science and Technology, 26, 1278–1284.

    Article  CAS  Google Scholar 

  • Meyers, P. A., & Ishiwatari, R. (1995). Organic matter accumulation records in lake sediments. In A. Lerman, D. M. Imboden, & J. R. Gat (Eds.), Physics and chemistry of lakes (pp. 279–328). Berlin: Springer.

    Chapter  Google Scholar 

  • Michael, S., Mclachlan, G. C., & Frank, W. (2002). The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils. Environmental Science and Technology, 36, 4860–4867.

    Article  CAS  Google Scholar 

  • Middleton, G. V. (1976). Hydraulic interpretations of sand size distribution. Journal of Geology, 84, 405–426.

    Article  Google Scholar 

  • Mille, G., Asia, L., Guiliano, M., Malleret, L., & Doumenq, P. (2007). Hydrocarbons in coastal sediments from the Mediterranean Sea (Gulf of Fos area, France). Marine Pollution Bulletin, 54, 566–575.

    Article  CAS  Google Scholar 

  • Molnia, B. F. (1974). A rapid and accurate method for the analysis of calcium carbonate in small samples. Journal of Sedimentary Petrology, 44, 589–590.

    CAS  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Neff, J. M. (1979). Polycyclic aromatic hydrocarbons sources fates and biological effects. London: Applied Science.

    Google Scholar 

  • Olajire, A. A., Altenburger, R., Kuester, E., & Brack, W. (2005). Chemical and ecotoxicological assessment of polycyclic hydrocarbon-contaminated sediments of the Niger Delta, Southern Nigeria. The Science of the Total Environment, 340, 123–136.

    Article  CAS  Google Scholar 

  • Ou, S. M., Zheng, J. H., Zheng, J. S., Richardson, B. J., & Lam, P. K. S. (2004). Petroleum hydrocarbons and polycyclic aromatic hydrocarbons in the surficial sediments of Xiamen Harbour and Yuan Dan Lake, China. Chemosphere, 56, 107–112.

    Article  CAS  Google Scholar 

  • Oyo-Ita, O. E., Ekpo, B. O., & Orosa, D. R. (2010). Distributions and sources of aliphatic hydrocarbons and ketones in surface sediments from the Cross River estuary, S.E. Niger Delta, Nigeria. Journal of Applied Sciences in Environmental Sanitation, 5(1), 1–11.

    CAS  Google Scholar 

  • Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36, 2917–2924.

    Article  CAS  Google Scholar 

  • Pendoley, K. (1992). Hydrocarbons in Rowley Shelf (Western Australia) oysters and sediments. Marine Pollution Bulletin, 24, 210–215.

    Article  CAS  Google Scholar 

  • Prahl, F. G., & Carpenter, R. (1983). Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment. Geochimica et Cosmochimica Acta, 47, 1013–1023.

    Article  CAS  Google Scholar 

  • Rieley, G., Collier, R. J., Jones, D. M., & Eglinton, G. (1991). The biogeochemistry of Ellesmere Lake, U.K.–I: source correlation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry, 17, 901–912.

    Article  CAS  Google Scholar 

  • Riley, J. P., & Skirrow, S. (1965). Chemical oceanography (p. 508). London: Academic.

    Google Scholar 

  • Sakari, M., Zakaria, M. P., Junos, M. B. M., Annuar, N. A., Yun, H. Y., Heng, Y. S., Zainuddin, S. M. H. S., & Chai, K. L. (2008). Spatial distribution of petroleum hydrocarbon in sediments of major rivers from east coast of peninsular Malaysia. Coastal Marine Science, 32(1), 1–8.

    Google Scholar 

  • Shi, Z., Tao, S., Pan, B., Liu, W. X., & Shen, W. R. (2007). Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China. Environmental Pollution, 146, 492–500.

    Article  CAS  Google Scholar 

  • Sicre, M. A., Marty, J. C., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmospheric Environment, 21, 2247–2259.

    Article  CAS  Google Scholar 

  • Simpson, C. D., Mosi, A. A., Cullen, W. R., & Reimer, K. J. (1998). Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediment from kitimat harbor Canada. The Science of the Total Environment, 181, 265–278.

    Article  Google Scholar 

  • Soclo, H. H., Garigues, P., & Ewald, M. (1986). Analyse quantitative des hydrcabures aromatiques polycyliques dans les sediments recents par chromatographie en phase liquide et detection spectrofluorometrque. Analusis, 14(7), 344–350.

    CAS  Google Scholar 

  • Steinhauer, M. S., & Boehm, P. D. (1992). The composition and distribution of saturated and aromatic hydrocarbons in nearshore sediments, river sediments and coastal peat of the Alaskan Beaufort Sea: implications for detecting anthropogenic hydrocarbon inputs. Marine Environmental Research, 33(40), 223–253.

    Article  CAS  Google Scholar 

  • UNEP/IOC/IAEA. (1991). Sampling of selected marine Organisms and sample preparation for the analysis of chlorinated hydrocarbons, Reference methods for marine pollution studies no. 12, revision 2. Nairobi: United Nations Environment Programme 17.

    Google Scholar 

  • UNEP/IOC/IAEA (1992). Determination of petroleum hydrocarbons in sediments. In Reference methods for marine pollution studies 20 (p. 75). Nairobi: UNEP.

  • UNEP (1995). Determination of petroleum hydrocarbons in sediments. In Reference methods for marine pollution studies no. 72. Nairobi: UNEP.

  • Unlü, S., & Alpar, B. (2006). Distribution and sources of hydrocarbons in surface sediments of Gemlik Bay, Marmara Sea, Turkey. Chemosphere, 64, 764–777.

    Article  CAS  Google Scholar 

  • USEPA. (1993). “Proposed Sediment Quality Criteria for the Protection of Benthic Organisma”, EPA-882-R-93-012, EPA-882-R-93-013, EPA-882-R-93-014. Washington, DC: US Environmental Protection Agency, Office of Water.

    Google Scholar 

  • Vasconcellos, P. C., Zacarias, D., Pires, M. A. F., Pool, C. S., & Carvalho, L. R. F. (2003). Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of Sao Paulo City, Brazil. Atmospheric Environment, 37, 3009–3018.

    Article  CAS  Google Scholar 

  • Venkatesan, M. I. (1988). Occurrence and possible sources of perylene in marine sediments—a review. Marine Chemistry, 25, 1–27.

    Article  CAS  Google Scholar 

  • Viñas, L., Franco, M. A., Soriano, J. A., González, J. J., Pon, J., & Albaigés, J. (2010). Sources and distribution of polycyclic aromatic hydrocarbons in sediments from the Spanish northern continental shelf. Assessment of spatial and temporal trends. Environmental Pollution, 158, 1551–1560.

    Article  CAS  Google Scholar 

  • Wakeham, S. G., Schaffner, C., & Giger, W. (1980). Polycyclic aromatic hydrocarbons in recent lake sediments. II. Compounds derived from biogenic precursors during early diagenesis. Geochimica et Cosmochimica Acta, 44, 415–429.

    Article  CAS  Google Scholar 

  • Walkely, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  Google Scholar 

  • Wang, X. L., Tao, S., Dawson, R. W., & Xu, F. L. (2002). Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater-irrigated area. Environmental Research, 90, 201–206.

    Article  CAS  Google Scholar 

  • Witt, G. (1995). Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, 31, 237–248.

    Article  CAS  Google Scholar 

  • Yang, G. P. (2000). Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environmental Pollution, 108, 163–171.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El Nemr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Nemr, A., El-Sadaawy, M.M., Khaled, A. et al. Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: assessment and source recognition of petroleum hydrocarbons. Environ Monit Assess 185, 4571–4589 (2013). https://doi.org/10.1007/s10661-012-2889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2889-1

Keywords

Navigation