Skip to main content

Advertisement

Log in

Evaluation of the temporal scaling variability in forecasting ground-level ozone concentrations obtained from multiple linear regressions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ozone is a highly unpredictable pollutant which severely affects living conditions in urban and surrounding areas in the Mediterranean basin. This secondary pollutant periodically reaches extremely high concentrations, damaging human health. Multiple linear regression has been widely used in previous works due to the fact that it is a simple and versatile method for forecasting ozone concentrations. However, these models usually prove their validity using fulfillment of statistical constraints, ignoring other intrinsic characteristics existing in the time series, such as the temporal scaling behavior and the data distribution over different time scales. In previous works, it has been demonstrated that observed ozone time series are of a multifractal nature, meaning that the data distribution can be described by using the multifractal spectrum. This work focuses on the capacity of a forecasting model to reproduce the scaling features existing in an observed time series when several chemical and meteorological explanatory variables are introduced following the stepwise procedure. A comparison between the observed spectrum and the simulated ones for each step is used to check which explanatory variables better reproduce the multifractal nature in real ozone time series. It has been confirmed that a model with few explanatory variables allows reproducing the multifractal nature in the simulated time series with an acceptable accuracy without compromising the values of the coefficient of determination and root-mean-squared error, which were used as performance indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdul-Wabah, S. A., Bakheti, C. S., & Al-Alawi, S. M. (2005). Principle component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software, 20, 1263–1271.

    Article  Google Scholar 

  • Abdul-Wahab, S. A., & Al-Alawi, S. M. (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling and Software, 17(3), 219–228. doi:10.1016/S1364-8152(01)00077-9.

    Article  Google Scholar 

  • Adame, J. A., Lozano, A., Bolívar, J. P., de la Morena, B. A., Contreras, J., & Godoy, F. (2008). Behavior, distribution and variability of surface ozone at an arid region in the south of Iberian Peninsula (Seville, Spain). Chemosphere, 70(5), 841–849. doi:10.1016/j.chemosphere.2007.07.009.

    Article  CAS  Google Scholar 

  • Barrero, M. A., Grimalt, J. O., & Cantón, L. (2006). Prediction of daily ozone concentration maxima in the urban atmosphere. Chemometrics and Intelligent Laboratory Systems, 80(1), 67–76. doi:10.1016/j.chemolab.2005.07.003.

    Article  CAS  Google Scholar 

  • Cheng, W. L., Pai, J. L., Tsuang, B. J., & Chen, C. L. (2001). Synoptic patterns in relation to ozone concentrations in west-central Taiwan. Meteorological and Atmospheric Physics, 78(1–2), 11–21. doi:10.1007/s007030170002.

    Article  Google Scholar 

  • Chhabra, A. B., & Jensen, R. V. (1989). Direct determination of the f(α) singularity spectrum. Physical Review Letters, 62(12), 1327–1330. doi:10.1103/PhysRevLett.62.1327.

    Article  Google Scholar 

  • Chhabra, A. B., Meneveau, C., Jensen, R. V., & Sreenivasan, K. R. (1989). Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence. Physical Review A, 40, 5284–5294. doi:10.1103/PhysRevA.40.5284.

    Article  Google Scholar 

  • Comrie, A. C. (1997). Comparing neural networks and regression models for ozone forecasting. Journal of the Air and Waste Management Association, 47(6), 653–663.

    Article  CAS  Google Scholar 

  • Directive 2002/3/EC. (2002). European ozone directive. Official Journal of the European Communities.

  • Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2004). Analyses of ozone in urban and rural sites in Málaga (Spain). Chemosphere, 56(6), 631–639. doi:10.1016/j.chemosphere.2004.04.013.

    Article  Google Scholar 

  • Evertsz, C. J. G., & Mandelbrot, B. B. (1992). Multifractal measures (Appendix B). In H. O. Peitgen et al. (Eds.), Chaos and fractals (pp. 922–953). New York: Springer.

    Google Scholar 

  • Evtyugina, M. G., Nunes, T., Pio, C., & Costa, C. S. (2006). Photochemical pollution under sea breeze conditions, during summer, at the Portuguese West Coast. Atmospheric Environment, 40(33), 6277–6293. doi:10.1016/j.atmosenv.2006.05.046.

    Article  CAS  Google Scholar 

  • Feder, J. (1988). Fractals. NewYork: Plenum.

    Google Scholar 

  • Feng, Z. Z., Kobayashi, K., & Ainsworth, E. A. (2008). Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biology, 14, 2696–2708. doi:10.1111/j.1365-2486.2008.01673.x.

    Google Scholar 

  • Fernández-Fernández, M., Gallego, M. C., García, J. A., & Acero, F. J. (2011). A study of surface ozone variability over the Iberian Peninsula during the last fifty years. Atmospheric Environmental, 45(11), 1946–1956. doi:10.1016/j.atmosenv.2011.01.027.

    Article  Google Scholar 

  • Fuentes, J. D., & Dann, T. F. (1994). Ground-level ozone in eastern Canada—seasonal-variations, trends, and occurrences of high-concentrations. Journal of the Air and Waste Management Association, 44, 1019–1026.

    CAS  Google Scholar 

  • Gardner, M. W., & Dorling, S. R. (2000). Meteorologically adjusted trends in UK daily maximum surface ozone concentrations. Atmospheric Environment, 34(2), 171–176. doi:10.1016/S1352-2310(99)00315-5.

    Article  CAS  Google Scholar 

  • Ghazali, N. A., Ramli, N. A., Yahaya, A. S., Yusof, N. F. F. M. D., Sansuddin, N., & Al Madhoun, W. A. (2010). Transformation of nitrogen dioxide into ozone and prediction concentrations using multiple linear regression techniques. Environmental Monitoring and Assessment, 165(1–4), 475–489. doi:10.1007/s10661-009-0960-3.

    Article  CAS  Google Scholar 

  • Grassberger, P. (1983). Generalized dimensions of strange attractors. Physical Reviwer Letter A, 97, 227–230. doi:10.1016/0375-9601(83)90753-3.

    Article  Google Scholar 

  • Guicherit, R., & Van Dop, H. (1977). Photochemical production of ozone in western Europe (1971–1975) and its relation to meteorology. Atmospheric Environment, 11(2), 145–155. doi:10.1016/0004-6981(77)90219-0.

    Article  CAS  Google Scholar 

  • Güsten, H. (1986). Formation, transport and control of photochemical smog. In O. Hutzinger (Ed.), The handbook of environmental chemistry (Vol. 4A/part A, pp. 53–105). Berlin: Springer.

    Google Scholar 

  • Güsten, H., Heinrich, G., Cvitaš, T., Klasinc, L., Ruscic, B., Lalas, D. P., et al. (1988). Photochemical formation and transport of ozone in Athens, Greece. Atmospheric Environment, 22(9), 1855–1861. doi:10.1016/0004-6981(88)90074-1.

    Article  Google Scholar 

  • Güsten, H., Heinrich, G., Weppner, J., Abdel-Aal, M. M., Abdel-Hay, F. A., Ramadan, A. B., et al. (1994). Ozone formation in the greater Cairo area. Science of the Total Environment, 155(3), 285–295. doi:10.1016/0048-9697(94)90507-X.

    Article  Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., & Shraiman, B. I. (1986). Fractal measures and their singularities: the characterization of strange sets. Physical Reviwer A, 33, 1141–1151. doi:10.1103/PhysRevA.33.1141.

    Article  Google Scholar 

  • Hentschel, H. G. E., & Procaccia, I. (1983). The infinite number of generalized dimensions of fractals and strange attractors. Physica D. Nonlinear Phenomena, 8(3), 435–444. doi:10.1016/0167-2789(83)90235-X.

    Article  Google Scholar 

  • Hoek, G., Schwartz, G. D., Groot, B., & Eilers, P. (1997). Effects of ambient particulate matter and ozone on daily mortality in Rotterdam, the Netherlands. Archives of Environmental Health, 526(6), 455–463.

    Article  Google Scholar 

  • Jiménez-Hornero, F. J., Gutiérrez de Ravé, E., Ariza-Villaverde, A. B., & Giráldez, J. V. (2010). Description of the seasonal pattern in ozone concentration time series by using the strange attractor multifractal formalism. Environmental Monitoring and Assessment, 160, 229–236. doi:10.1007/s10661-008-0690-y.

    Article  Google Scholar 

  • Kalabokas, P. D., Viras, L. G., Bartzis, J. G., & Repapis, C. C. (2000). Mediterranean rural ozone characteristics around the urban area of Athens. Atmospheric Environment, 34(29–30), 5199–5208. doi:10.1016/S1352-2310(00)00298-3.

    Article  CAS  Google Scholar 

  • Kravchenko, A. N., Boast, C. W., & Bullock, D. G. (1999). Multifractal analysis of soil spatial variability. Agronomy Journal, 91(6), 1033–1041.

    Article  Google Scholar 

  • Kucera, V., & Fitz, S. (1995). Direct and indirect air pollution effects on materials including cultural monuments. Water, Air, and Soil Pollution, 85, 153–165.

    Article  CAS  Google Scholar 

  • Lee, C. K., Juang, L. C., Wang, C. C., Liao, Y. Y., Yu, C. C., Liu, Y. C., et al. (2006). Scaling characteristics in ozone concentration time series (OCTS). Chemosphere, 62, 934–946. doi:10.1016/j.chemosphere.2005.05.046.

    Article  CAS  Google Scholar 

  • Leighton, P. A. (1961). Photochemistry of air pollution. New York: Academic.

    Google Scholar 

  • Lengyel, A., Heberger, K., Paksy, L., Bánhidi, O., & Rajkó, R. (2004). Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, 57(8), 889–896. doi:10.1016/j.chemosphere.2004.07.043.

    Article  CAS  Google Scholar 

  • Olsson, J. J., Niemczynowicz, J., & Berndtsson, R. (1993). Fractal analysis of high-resolution rainfall time series. Journal of Geophysical Research-Atmospheres, 98(D12), 23265–23274.

    Article  Google Scholar 

  • Prybutok, V. R., Yi, J. S., & Mitchell, D. (2000). Comparison of neural network models with ARIMA and regression models for predictions of Houston's daily maximum ozone concentrations. European Journal of Operational Research, 122(1), 31–40. doi:10.1016/S0377-2217(99)00069-7.

    Article  Google Scholar 

  • Ribas, A., & Peñuelas, J. (2004). Temporal patterns of surface ozone levels in different habitats of the North Western Mediterranean basin. Atmospheric Environment, 38(7), 985–992. doi:10.1016/j.atmosenv.2003.10.045.

    Article  CAS  Google Scholar 

  • Schlink, U., Herbarth, O., Richter, M., Dorling, S., Nunnari, G., Cawleyd, G., et al. (2006). Statistical models to assess the health effects and to forecast ground-level ozone. Environmental Modelling and Software, 21(4), 547–558. doi:10.1016/j.envsoft.2004.12.002.

    Article  Google Scholar 

  • Sillman, S. (1999). The relation between ozone, NO x and hydrocarbons in urban and polluted rural environments. Atmospheric Environments, 33(12), 1821–1845. doi:10.1016/S1352-2310(98)00345-8.

    Article  CAS  Google Scholar 

  • Singh, H. B., Ludwig, F. L., & Johnson, W. B. (1978). Tropospheric ozone: concentrations and variabilities in clear remote atmospheres. Atmospheric Environment, 12(11), 2185–2196. doi:10.1016/0004-6981(78)90174-9.

    Article  CAS  Google Scholar 

  • Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, M. C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling and Software, 22(1), 97–103. doi:10.1016/j.envsoft.2005.12.002.

    Article  Google Scholar 

  • Tang, X. A., Wang, Z. F., Zhu, J. A., Gbaguidi, A. E., Wu, Q. Z., Li, J., et al. (2010). Sensitivity of ozone to precursor emissions in urban Beijing with a Monte Carlo scheme. Atmospheric Environment, 44(31), 3833–3842. doi:10.1016/j.atmosenv.2010.06.026.

    Article  CAS  Google Scholar 

  • Tsai, D. H., Wang, M. L., Wang, C. H., & Chan, C. C. (2008). A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan. Journal of Environmental Monitoring, 10, 109–118.

    Article  CAS  Google Scholar 

  • Wang, X., Manning, W., Feng, Z., & Zhu, Y. (2007). Ground level ozone in China: distribution and effect on crop yields. Environmental Pollution, 147, 394–400.

    Article  CAS  Google Scholar 

  • Yi, J. S., & Prybutok, V. R. (1996). A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environmental Pollution, 92(3), 349–357. doi:10.1016/0269-7491(95)00078-X.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The “sequence-determines-credit” approach has been applied for the authors' order. The authors gratefully acknowledge the support from the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía), ERDF, and ESF Project P08-RNM-3989 and the Spanish Ministry of Economy and Competitiveness and ERDF Projects AGL2009-12936-C03-02 and CGL2012-35249-C02-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pavón-Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavón-Domínguez, P., Jiménez-Hornero, F.J. & de Ravé, E.G. Evaluation of the temporal scaling variability in forecasting ground-level ozone concentrations obtained from multiple linear regressions. Environ Monit Assess 185, 3853–3866 (2013). https://doi.org/10.1007/s10661-012-2834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2834-3

Keywords