Abstract
Ozone is a highly unpredictable pollutant which severely affects living conditions in urban and surrounding areas in the Mediterranean basin. This secondary pollutant periodically reaches extremely high concentrations, damaging human health. Multiple linear regression has been widely used in previous works due to the fact that it is a simple and versatile method for forecasting ozone concentrations. However, these models usually prove their validity using fulfillment of statistical constraints, ignoring other intrinsic characteristics existing in the time series, such as the temporal scaling behavior and the data distribution over different time scales. In previous works, it has been demonstrated that observed ozone time series are of a multifractal nature, meaning that the data distribution can be described by using the multifractal spectrum. This work focuses on the capacity of a forecasting model to reproduce the scaling features existing in an observed time series when several chemical and meteorological explanatory variables are introduced following the stepwise procedure. A comparison between the observed spectrum and the simulated ones for each step is used to check which explanatory variables better reproduce the multifractal nature in real ozone time series. It has been confirmed that a model with few explanatory variables allows reproducing the multifractal nature in the simulated time series with an acceptable accuracy without compromising the values of the coefficient of determination and root-mean-squared error, which were used as performance indicators.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abdul-Wabah, S. A., Bakheti, C. S., & Al-Alawi, S. M. (2005). Principle component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software, 20, 1263–1271.
Abdul-Wahab, S. A., & Al-Alawi, S. M. (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling and Software, 17(3), 219–228. doi:10.1016/S1364-8152(01)00077-9.
Adame, J. A., Lozano, A., Bolívar, J. P., de la Morena, B. A., Contreras, J., & Godoy, F. (2008). Behavior, distribution and variability of surface ozone at an arid region in the south of Iberian Peninsula (Seville, Spain). Chemosphere, 70(5), 841–849. doi:10.1016/j.chemosphere.2007.07.009.
Barrero, M. A., Grimalt, J. O., & Cantón, L. (2006). Prediction of daily ozone concentration maxima in the urban atmosphere. Chemometrics and Intelligent Laboratory Systems, 80(1), 67–76. doi:10.1016/j.chemolab.2005.07.003.
Cheng, W. L., Pai, J. L., Tsuang, B. J., & Chen, C. L. (2001). Synoptic patterns in relation to ozone concentrations in west-central Taiwan. Meteorological and Atmospheric Physics, 78(1–2), 11–21. doi:10.1007/s007030170002.
Chhabra, A. B., & Jensen, R. V. (1989). Direct determination of the f(α) singularity spectrum. Physical Review Letters, 62(12), 1327–1330. doi:10.1103/PhysRevLett.62.1327.
Chhabra, A. B., Meneveau, C., Jensen, R. V., & Sreenivasan, K. R. (1989). Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence. Physical Review A, 40, 5284–5294. doi:10.1103/PhysRevA.40.5284.
Comrie, A. C. (1997). Comparing neural networks and regression models for ozone forecasting. Journal of the Air and Waste Management Association, 47(6), 653–663.
Directive 2002/3/EC. (2002). European ozone directive. Official Journal of the European Communities.
Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2004). Analyses of ozone in urban and rural sites in Málaga (Spain). Chemosphere, 56(6), 631–639. doi:10.1016/j.chemosphere.2004.04.013.
Evertsz, C. J. G., & Mandelbrot, B. B. (1992). Multifractal measures (Appendix B). In H. O. Peitgen et al. (Eds.), Chaos and fractals (pp. 922–953). New York: Springer.
Evtyugina, M. G., Nunes, T., Pio, C., & Costa, C. S. (2006). Photochemical pollution under sea breeze conditions, during summer, at the Portuguese West Coast. Atmospheric Environment, 40(33), 6277–6293. doi:10.1016/j.atmosenv.2006.05.046.
Feder, J. (1988). Fractals. NewYork: Plenum.
Feng, Z. Z., Kobayashi, K., & Ainsworth, E. A. (2008). Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biology, 14, 2696–2708. doi:10.1111/j.1365-2486.2008.01673.x.
Fernández-Fernández, M., Gallego, M. C., García, J. A., & Acero, F. J. (2011). A study of surface ozone variability over the Iberian Peninsula during the last fifty years. Atmospheric Environmental, 45(11), 1946–1956. doi:10.1016/j.atmosenv.2011.01.027.
Fuentes, J. D., & Dann, T. F. (1994). Ground-level ozone in eastern Canada—seasonal-variations, trends, and occurrences of high-concentrations. Journal of the Air and Waste Management Association, 44, 1019–1026.
Gardner, M. W., & Dorling, S. R. (2000). Meteorologically adjusted trends in UK daily maximum surface ozone concentrations. Atmospheric Environment, 34(2), 171–176. doi:10.1016/S1352-2310(99)00315-5.
Ghazali, N. A., Ramli, N. A., Yahaya, A. S., Yusof, N. F. F. M. D., Sansuddin, N., & Al Madhoun, W. A. (2010). Transformation of nitrogen dioxide into ozone and prediction concentrations using multiple linear regression techniques. Environmental Monitoring and Assessment, 165(1–4), 475–489. doi:10.1007/s10661-009-0960-3.
Grassberger, P. (1983). Generalized dimensions of strange attractors. Physical Reviwer Letter A, 97, 227–230. doi:10.1016/0375-9601(83)90753-3.
Guicherit, R., & Van Dop, H. (1977). Photochemical production of ozone in western Europe (1971–1975) and its relation to meteorology. Atmospheric Environment, 11(2), 145–155. doi:10.1016/0004-6981(77)90219-0.
Güsten, H. (1986). Formation, transport and control of photochemical smog. In O. Hutzinger (Ed.), The handbook of environmental chemistry (Vol. 4A/part A, pp. 53–105). Berlin: Springer.
Güsten, H., Heinrich, G., Cvitaš, T., Klasinc, L., Ruscic, B., Lalas, D. P., et al. (1988). Photochemical formation and transport of ozone in Athens, Greece. Atmospheric Environment, 22(9), 1855–1861. doi:10.1016/0004-6981(88)90074-1.
Güsten, H., Heinrich, G., Weppner, J., Abdel-Aal, M. M., Abdel-Hay, F. A., Ramadan, A. B., et al. (1994). Ozone formation in the greater Cairo area. Science of the Total Environment, 155(3), 285–295. doi:10.1016/0048-9697(94)90507-X.
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., & Shraiman, B. I. (1986). Fractal measures and their singularities: the characterization of strange sets. Physical Reviwer A, 33, 1141–1151. doi:10.1103/PhysRevA.33.1141.
Hentschel, H. G. E., & Procaccia, I. (1983). The infinite number of generalized dimensions of fractals and strange attractors. Physica D. Nonlinear Phenomena, 8(3), 435–444. doi:10.1016/0167-2789(83)90235-X.
Hoek, G., Schwartz, G. D., Groot, B., & Eilers, P. (1997). Effects of ambient particulate matter and ozone on daily mortality in Rotterdam, the Netherlands. Archives of Environmental Health, 526(6), 455–463.
Jiménez-Hornero, F. J., Gutiérrez de Ravé, E., Ariza-Villaverde, A. B., & Giráldez, J. V. (2010). Description of the seasonal pattern in ozone concentration time series by using the strange attractor multifractal formalism. Environmental Monitoring and Assessment, 160, 229–236. doi:10.1007/s10661-008-0690-y.
Kalabokas, P. D., Viras, L. G., Bartzis, J. G., & Repapis, C. C. (2000). Mediterranean rural ozone characteristics around the urban area of Athens. Atmospheric Environment, 34(29–30), 5199–5208. doi:10.1016/S1352-2310(00)00298-3.
Kravchenko, A. N., Boast, C. W., & Bullock, D. G. (1999). Multifractal analysis of soil spatial variability. Agronomy Journal, 91(6), 1033–1041.
Kucera, V., & Fitz, S. (1995). Direct and indirect air pollution effects on materials including cultural monuments. Water, Air, and Soil Pollution, 85, 153–165.
Lee, C. K., Juang, L. C., Wang, C. C., Liao, Y. Y., Yu, C. C., Liu, Y. C., et al. (2006). Scaling characteristics in ozone concentration time series (OCTS). Chemosphere, 62, 934–946. doi:10.1016/j.chemosphere.2005.05.046.
Leighton, P. A. (1961). Photochemistry of air pollution. New York: Academic.
Lengyel, A., Heberger, K., Paksy, L., Bánhidi, O., & Rajkó, R. (2004). Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, 57(8), 889–896. doi:10.1016/j.chemosphere.2004.07.043.
Olsson, J. J., Niemczynowicz, J., & Berndtsson, R. (1993). Fractal analysis of high-resolution rainfall time series. Journal of Geophysical Research-Atmospheres, 98(D12), 23265–23274.
Prybutok, V. R., Yi, J. S., & Mitchell, D. (2000). Comparison of neural network models with ARIMA and regression models for predictions of Houston's daily maximum ozone concentrations. European Journal of Operational Research, 122(1), 31–40. doi:10.1016/S0377-2217(99)00069-7.
Ribas, A., & Peñuelas, J. (2004). Temporal patterns of surface ozone levels in different habitats of the North Western Mediterranean basin. Atmospheric Environment, 38(7), 985–992. doi:10.1016/j.atmosenv.2003.10.045.
Schlink, U., Herbarth, O., Richter, M., Dorling, S., Nunnari, G., Cawleyd, G., et al. (2006). Statistical models to assess the health effects and to forecast ground-level ozone. Environmental Modelling and Software, 21(4), 547–558. doi:10.1016/j.envsoft.2004.12.002.
Sillman, S. (1999). The relation between ozone, NO x and hydrocarbons in urban and polluted rural environments. Atmospheric Environments, 33(12), 1821–1845. doi:10.1016/S1352-2310(98)00345-8.
Singh, H. B., Ludwig, F. L., & Johnson, W. B. (1978). Tropospheric ozone: concentrations and variabilities in clear remote atmospheres. Atmospheric Environment, 12(11), 2185–2196. doi:10.1016/0004-6981(78)90174-9.
Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, M. C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling and Software, 22(1), 97–103. doi:10.1016/j.envsoft.2005.12.002.
Tang, X. A., Wang, Z. F., Zhu, J. A., Gbaguidi, A. E., Wu, Q. Z., Li, J., et al. (2010). Sensitivity of ozone to precursor emissions in urban Beijing with a Monte Carlo scheme. Atmospheric Environment, 44(31), 3833–3842. doi:10.1016/j.atmosenv.2010.06.026.
Tsai, D. H., Wang, M. L., Wang, C. H., & Chan, C. C. (2008). A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan. Journal of Environmental Monitoring, 10, 109–118.
Wang, X., Manning, W., Feng, Z., & Zhu, Y. (2007). Ground level ozone in China: distribution and effect on crop yields. Environmental Pollution, 147, 394–400.
Yi, J. S., & Prybutok, V. R. (1996). A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environmental Pollution, 92(3), 349–357. doi:10.1016/0269-7491(95)00078-X.
Acknowledgments
The “sequence-determines-credit” approach has been applied for the authors' order. The authors gratefully acknowledge the support from the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía), ERDF, and ESF Project P08-RNM-3989 and the Spanish Ministry of Economy and Competitiveness and ERDF Projects AGL2009-12936-C03-02 and CGL2012-35249-C02-00.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pavón-Domínguez, P., Jiménez-Hornero, F.J. & de Ravé, E.G. Evaluation of the temporal scaling variability in forecasting ground-level ozone concentrations obtained from multiple linear regressions. Environ Monit Assess 185, 3853–3866 (2013). https://doi.org/10.1007/s10661-012-2834-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10661-012-2834-3

