Skip to main content
Log in

Distribution coefficients (K d) of stable iodine in estuarine and coastal regions, Japan, and their relationship to salinity and organic carbon in sediments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The sediment–water distribution coefficient, K d, is one of the most important parameters in radionuclide assessment models. In this study, we determined K ds of stable iodine (I) in estuarine and coastal regions. We studied 16 estuarine and coastal regions of Japan and obtained I data on water and sediments. Data on salinity, pH, dissolved organic carbon and dissolved oxygen in water, and organic carbon (OC) in sediments were also obtained as estuarine variables. Determined K ds of I in the Sagami River estuary decreased along the salinity gradient (salinity range, 0.1–33.8), indicating that salinity is one of the important factors controlling the K d values; however, when the K d values were compared among all the estuaries, the difference between minimum and maximum K d values varied by about two orders of magnitude in a narrow salinity range of 30.0–34.4. A significant correlation between K d value and OC content in sediments was observed in all the stations with a salinity of ≥30 except for stations in the Ishikari and Onga River estuaries. The exceptions are probably due to different sources of the sediments, which are explained by the results of relatively low I/OC ratios in sediments in those two estuaries, compared to the other estuaries. Thus, OC in sediments as well as salinity may be responsible for the variation of K ds of I in the estuarine and coastal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

K d :

Distribution coefficient

DOC:

Dissolved organic carbon

DO:

Dissolved oxygen

OC:

Organic carbon

TRS:

Technical report series

References

  • Alagarsamy, R. (1991). Organic carbon in the sediments of Mandovi estuary, Goa. Indian Journal of Marine Science, 20, 221–222.

    CAS  Google Scholar 

  • Bertine, K. K. (1972). The deposition of molybdenum in anoxic waters. Marine Chemistry, 1, 43–53.

    Article  CAS  Google Scholar 

  • Bird, G. A., & Schwartz, W. (1996). Distribution coefficients, Kds, for iodide in Canadian Shield Lake sediments under oxic and anoxic conditions. Journal of Environmental Radioactivity, 35, 261–279.

    Article  Google Scholar 

  • Chaillou, G., Anschutz, P., Lavaux, G., Schäfer, J., & Blanc, G. (2002). The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay. Marine Chemistry, 80, 41–59.

    Article  CAS  Google Scholar 

  • Colley, S., & Thomson, J. (1985). Recurrent uranium relocations in distal turbidities emplaced in pelagic conditions. Geochimica et Cosmochimica Acta, 49, 2339–2348.

    Article  CAS  Google Scholar 

  • Elderfield, H., & Truesdale, V. W. (1980). On the biophilic nature of iodine in sea water. Earth and Planetary Science Letters, 50, 105–114.

    Article  CAS  Google Scholar 

  • Elderfield, H., McCafferey, R. J., Luedtken, N., Bender, M., & Truesdale, V. W. (1981). Chemical diagenesis in Narragansett Bay sediments. American Journal of Science, 281, 1021–1055.

    Article  CAS  Google Scholar 

  • Francois, R. (1987). The influence of humic substances on the geochemistry of iodine in nearshore and hemipelagic marine sediments. Geochimica et Cosmochimica Acta, 51, 2417–2427.

    Article  CAS  Google Scholar 

  • Fuhrmann, M., Zhou, H., Neiheisel, J., Schoonen, M. A. A., & Dyer, R. (1997). Sorption/desorption of radioactive contaminants by sediment from the Kara Sea. Science of the Total Environment, 202, 5–24.

    Article  CAS  Google Scholar 

  • Hansen, V., Roos, P., Aldahan, A., Hou, X., & Possnert, G. (2011). Partition of iodine (129I and 127I) isotopes in soils and marine sediments. Journal of Environmental Radioactivity, 102, 1096–1110.

    Article  CAS  Google Scholar 

  • Harvey, G. R. (1980). A study of the chemistry of iodine and bromine in marine sediments. Marine Chemistry, 8, 327–332.

    Article  CAS  Google Scholar 

  • IAEA. (1985). Sediment Kds and concentration factors for radionuclides in the marine environment. In IAEA Technical Reports Series No. 247. Vienna: International Atomic Energy Agency.

    Google Scholar 

  • IAEA. (2004). Sediment distribution coefficients and concentration factors for biota in the marine environment. In IAEA Technical Reports Series No. 422. Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Katagiri, K., Shimizue, T., Akatsu, Y., & Ishiguro, H. (1997). Study on the behaviour of 129I in the terrestrial environment. Journal of Radioanalytical and Nuclear Chemistry, 226, 23–27.

    Article  CAS  Google Scholar 

  • Kennedy, H. A., & Elderfield, H. (1987). Iodine diagenesis in non-pelagic deep-sea sediments. Geochimica et Cosmochimica Acta, 51, 2505–2514.

    Article  CAS  Google Scholar 

  • Malcolm, S. J., & Price, N. B. (1984). The behaviour of iodine and bromine in estuarine surface sediments. Marine Chemistry, 15, 263–271.

    Article  CAS  Google Scholar 

  • Muramatsu, Y., Yoshida, S., Uchida, S., & Hasebe, A. (1996). Iodine desorption from rice paddy soil. Water, Air, and Soil Pollution, 86, 359–371.

    Article  CAS  Google Scholar 

  • Neal, C., & Truesdale, V. W. (1976). The sorption of iodate and iodide by riverine sediments: its implications to dilution gauging and hydrochemistry of iodine. Journal of Hydrology, 31, 281–291.

    Article  CAS  Google Scholar 

  • NIRS. (2007). Elemental concentrations in Japanese rivers 2002–2006. NIRS-M-200. Chiba: National Institute of Radiological Sciences.

    Google Scholar 

  • Nishio, E., Morita, S., Toyokawa, T., & Tomita, Y. (2004). Influencing factors on seasonal variation of mutagenicity of tap water. Environmental Mutagen Research, 26, 81–88.

    Article  CAS  Google Scholar 

  • Oktay, S. D., Santschi, P. H., Moran, J. E., & Sharma, P. (2001). 129I and 127I transport in the Mississippi River. Environmental Science and Technology, 35, 4470–4476.

    Article  CAS  Google Scholar 

  • Price, N. B., & Calvert, S. E. (1977). The contrasting geochemical behaviours of iodine and bromine in recent sediments from the Namibian Shelf. Geochimica et Cosmochimica Acta, 41, 1769–1775.

    Article  CAS  Google Scholar 

  • Price, N. B., Calvert, S. E., & Jones, P. G. W. (1970). The distribution of iodine and bromine in the southwestern Barents Sea. Journal of Marine Research, 28, 22–34.

    CAS  Google Scholar 

  • Rädlinger, G., & Heumann, K. G. (2000). Transformation of iodide in natural and wastewater systems by fixation on humic substances. Environmental Science and Technology, 34, 3932–3936.

    Article  Google Scholar 

  • Schmidt, A., Schnabel, C., Handl, J., Jakob, D., Michel, R., Synal, H.-A., Lopez, J. M., & Suter, M. (1998). On the analysis of iodine-129 and iodine-127 in environmental materials by accelerator mass spectrometry and ion chromatography. Science of the Total Environment, 223, 131–156.

    Article  CAS  Google Scholar 

  • Schwehr, A. K., Santschi, P. H., & Elmore, D. (2005). The dissolved organic iodine species of the isotopic retio of 129I/127I: a novel tool for tracing terrestrial organic carbon in the estuarine surface waters of Galveston Bay, Texas. Limnology and Oceanography: Methods, 3(2005), 326–337.

    Article  CAS  Google Scholar 

  • Sheppard, J. I., & Thibault, D. H. (1992). Chemical behavior of iodine in organic and mineral soils. Applied Geochemistry, 7, 265–272.

    Article  CAS  Google Scholar 

  • Shimamoto, Y., Takahashi, Y., & Terada, Y. (2010). Formation of organic iodine supplied as iodide in a soil–water system in Chiba, Japan. Environmental Science and Technology, 45, 2086–2092.

    Article  Google Scholar 

  • Tagami, K., Uchida, S., Takeda, A., Yamasaki, S., & Tsuchiya, N. (2010). Estimation of plant unavailable iodine concentrations in agricultural fields. Soil Science Society of America Journal, 74, 562–1567.

    Article  Google Scholar 

  • Takata, H., Aono, T., Tagami, K., & Uchida, S. (2010a). Processes controlling cobalt distribution in two temperate estuaries, Sagami Bay and Wakasa Bay, Japan. Estuarine, Coastal and Shelf Science, 89, 294–305.

    Article  CAS  Google Scholar 

  • Takata, H., Aono, T., Tagami, K., & Uchida, S. (2010b). Sediment–water distribution coefficients of stable elements in four estuarine areas in Japan. Journal of Radioanalytical and Nuclear Chemistry, 47, 111–122.

    CAS  Google Scholar 

  • Takeda, A., Yamasaki, S., Tsukada, H., Takaku, Y., Hisamatsu, S., & Tsuchiya, N. (2011). Determination of total contents of bromine, iodine and several trace elements in soil by polarizing energy-dispersive X-ray fluorescence spectrometry. Soil Science and Plant Nutrition, 57, 19–28.

    Article  CAS  Google Scholar 

  • Thomson, J., Wallace, H. E., Colley, S., & Toole, J. (1990). Authigenic uranium in Atlantic sediments of the last glacial stage—a diagenetic phenomenon. Earth and Planetary Science Letters, 98, 222–232.

    Article  CAS  Google Scholar 

  • Thomson, J., Nixon, S., Croudace, I. W., Pedersen, T. F., Brown, L., Cook, G. T., & Mackenzie, A. B. (2001). Redox-sensitive element uptake in north-east Atlantic Ocean sediments (Benthic Boundary Layer Experiment Site). Earth and Planetary Science Letters, 184, 535–547.

    Article  CAS  Google Scholar 

  • Thornton, S. F., & McManus, J. (1994). Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay estuary, Scotland. Estuarine, Coastal and Shelf Science, 38, 219–233.

    Article  CAS  Google Scholar 

  • Uchida, S., Tagami, K., & Hirai, I. (2007). Soil-to-plant factors of stable elements and naturally occurring radionuclides. (1) Upland field crops collected in Japan. Journal of Nuclear Science and Technology, 44, 628–640.

    Article  CAS  Google Scholar 

  • Wong, G. T. F. (1991). The marine geochemistry of iodine. Reviews in Aquatic Sciences, 4, 45–73.

    CAS  Google Scholar 

  • Wong, G. T. F., & Cheng, X. H. (2001). The formation of iodide in inshore waters from the photochemical decomposition of dissolved organic iodine. Marine Chemistry, 74, 53–64.

    Article  CAS  Google Scholar 

  • Wongsa, S., & Shimizu, Y. (2006). Improvement of catchments scale system model for Ishikari River. In G. Parker & M. H. García (Eds.), Proceedings of the 4th IAHR Symposium on River, Coastal and Estuarine Morphodynamics (RCEM 2005, Urbana, IL, 4–7 October 2005). Oxford: Taylor and Francis.

  • Yamaguchi, N., Nakano, M., Takematsu, R., & Tanida, H. (2010). Inorganic iodine incorporation into soil organic matter: evidence from iodine K-edge X-ray adsorption near-edge structure. Journal of Environmental Radioactivity, 101, 451–457.

    Article  CAS  Google Scholar 

  • Zhang, S., Schwehr, K. A., Ho, Y.-F., Xu, C., Roberts, K. A., Kaplan, D. I., Brinkmeyer, R., Yeager, C. M., & Santschi, P. H. (2010). A novel approach for the simultaneous determination of iodide, iodate and organo-iodide for 127I and 129I in environmental samples using gas chromatography–mass spectrometry. Environmental Science and Technology, 44, 9042–9048.

    Article  CAS  Google Scholar 

  • Zhang, S., Du, J., Xu, C., Schwehr, K. A., Ho, Y.-F., Li, H.-P., Roberts, K. A., Kaplan, D. I., Brinkmeyer, R., Yeager, C. M., Chang, H.-S., & Santschi, P. H. (2011). Concentration-dependent mobility, retardation, and speciation of iodine in surface sediment from the Savannah River site. Environmental Science and Technology, 45, 5543–5549.

    Article  CAS  Google Scholar 

  • Zheng, J., Yamada, M., & Yoshida, S. (2011). Sensitive iodine speciation in seawater by multimode size-exclusion chromatography with sector-field ICP-MS. Journal of Analytical Atomic Spectrometry, 26, 1790–1795.

    Article  CAS  Google Scholar 

  • Zheng, J., Takata, H., Tagami, K., Aono, T., Fujita, K., & Uchida, S. (2012). Rapid determination of total iodine in Japanese coastal seawater using SF-ICP-MS. Microchemical Journal, 100, 42–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Shinichi Yamano, Mr. Masaki Matsui, Mss. Asada, Mss. Tamami Aragane (KANSO Technos Co., Ltd.), and Mr. Junichi Shirasaka (Tokyo Nuclear Service) for their technical support. We are also grateful for helpful comments on the manuscript from two anonymous reviewers. This work was partially supported by the Agency for Natural Resources and Energy, the Ministry of Economy, Trade and Industry (METI), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoe Takata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takata, H., Zheng, J., Tagami, K. et al. Distribution coefficients (K d) of stable iodine in estuarine and coastal regions, Japan, and their relationship to salinity and organic carbon in sediments. Environ Monit Assess 185, 3645–3658 (2013). https://doi.org/10.1007/s10661-012-2816-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2816-5

Keywords

Navigation