Skip to main content

Advertisement

Log in

An assessment of heavy metal contamination in soils of fresh water aquifer system and evaluation of eco-toxicity by lithogenic implications

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The chemistry of heavy metals in sediments with respect to bio-availability and chemical reactivity is regulated by pH, texture, and organic matter contents of the sediments and specific binding form and coupled reactivity of the metals within. To focus on the metal distribution (Fe, Mn, Pb, Cd, Zn, Co, Cu, and Cr) and behavior in a fresh water aquifer system along with the ecological toxicity parameters, a four-step sequential extraction method was applied on 18 Eastern Ghats’ type sediments from fluorosis-hit Nayagarh district, India. Geo-accumulation index of metals in the sediments indicates that they are practically uncontaminated and/or less contaminated with and Fe, Mn, and Cu; contaminated to moderately contaminated with Pb, Zn, and Cr; and strongly contaminated with Cd. Rather, more than 80 % recovered Cd metal concentration in sediments constitute the labile fractions. Temporal clustering of metal fractions indicates transition metal fraction distribution claiming the sediment pH regulation. Similarly, base metal distribution accounts for organic carbon and soil conductivity due to their greater availability in exchangeable and sulfide fractions. Correlation analysis and factor analysis scores demonstrate lack of inter-relationship between transition group and base metal fractions. High fluoride concentration in ground water is associated with high sodium-bicarbonate-iron affinity with elevated pH values (i.e., >7.0) and high positive factor score with the total iron concentration in ground water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, H. E., & Hansen, D. J. (1996). The importance of trace metal speciation to water quality criteria. Water Environment Research, 68, 42–54.

    Article  CAS  Google Scholar 

  • Assaad, E., Azzouz, A., Nistor, D., Ursu, A. V., Sajin, T., Miron, D. N., Monette, F., Niquette, P., & Hausler, R. (2007). Metal removal through synergic coagulation–locculation using an optimized chitosan–montmorillonite system. Applied Clay Science, 37, 258–274.

    Article  CAS  Google Scholar 

  • Backes, C. A., McLaren, R. G., Rate, A. W., & Swift, R. S. (1995). Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Soil Science Society of America Journal, 59, 778–785.

    Article  CAS  Google Scholar 

  • Bertin, C., & Bourg, A. C. M. (1995). Trend in the heavy metal content (Cd, Pb, Zn) of river sediment in the drainage basin of smelting activities. Water Research, 29, 1729–1736.

    Article  CAS  Google Scholar 

  • Camusso, M., Galassi, S., & Vignati, D. (2002). Assesment of river Po sediment quality by micropollutant analysis. Water Research, 36, 2491–2504.

    Article  CAS  Google Scholar 

  • Copeland, R. A., & Ayers, J. C. (1972). Trace element distribution in water, sediment, phytoplankton, zooplankton and benthos of Lake Michigan: a base line study with calculation of concentration factors and build up of radioisotopes in the food web. Ann Arbor: Environmental Research Group.

    Google Scholar 

  • Forstner, U. (1985). Chemical forms and reactivities of metals in sediments. In R. Leschber, R. D. Davis, & P. L’Hermite (Eds.), Chemical methods for assessing bioavailable metals in sludge and soils (pp. 1–30). London: Elsevier.

    Google Scholar 

  • Forstner, U., & Muller, G. (1973). Heavy metal accumulation in river sediment: a response to environmental pollution. Geoforum, 14, 53–61.

    Article  Google Scholar 

  • Förstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. Berlin: Springer.

    Google Scholar 

  • Goncalves, E. P. R., Boaventura, R. A. R., & Mouvet, C. (1992). Sediments and aquatic mosses as pollution indicators for heavy metals in the Ave River basin (Portugal). Science of the Total Environment, 142, 143–156.

    Article  Google Scholar 

  • Gupta, G. C., & Harrison, F. L. (1981). Effect of cations on copper adsorption by kaoline. Water, Air, and Soil Pollution, 15, 323–339.

    Article  CAS  Google Scholar 

  • Han, F. X., Banin, A., Kingery, W. L., Triplett, G. B., Zhou, L. X., Zheng, S. J., & Ding, W. X. (2003). New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8, 113–120.

    Article  CAS  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J.M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial (Piseuerga river, Spain) by principal component analysis. Water Research, 34, 807–816.

    Google Scholar 

  • ISI. (1991). Indian Standard Specification for Drinking Water IS:10500. India: Indian Standard Institute.

    Google Scholar 

  • Jenne, F. A. (1968). Controls of Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water: the significance of hydrous Mn and Fe oxides. American Chemical Society, Advances in Chemistry Series, 73, 337–387.

    Google Scholar 

  • Kemp, A. L. W., & Thomas, R. L. (1976). Impact of man’s activities on the chemical composition in the sediments of Lakes Ontario, Erie and Huron. Water, Air, and Soil Pollution, 5, 469–490.

    Article  CAS  Google Scholar 

  • Lim, T. T., Tay, J. H., & Wang, J. Y. (2004). Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. Journal of Environmental Engineering, 130, 59–66.

    Article  CAS  Google Scholar 

  • Liu, W. X., Li, X. D., Shen, Z. G., Wang, D. C., Wai, O. W. H., & Li, Y. S. (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environmental Pollution, 121, 377–388.

    Article  CAS  Google Scholar 

  • Middelburg, J. J., Correlis, H., Weijdew, V. D., & Woittiez, J. R. W. (1988). Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology, 68, 253–273.

    Article  CAS  Google Scholar 

  • Muller, G. (1979). Schwermetalle in den sediment des Rheins,Veranderungem Seit 1971. Umschau, 79, 778–783.

  • Nolting, R. F., Ramkema, A., & Everaats, J. M. (1999). The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of the Banc d’Arguin (Mauritania). Continental Shelf Research, 19, 665–691.

    Article  Google Scholar 

  • Nriagu, J. O. (1979). Copper in the environment. Part I: ecological cycling (p. 217). New York: Wiley.

    Google Scholar 

  • Pati, G.C. (2009). Ground water resource scenario of Orissa, Workshop on Ground Water Scenario and Quality in Orissa, 6th &7th March, Bhubaneswar.

  • Prasad, M. B. K., Ramanathan, A. L., Shrivastav, S. K. R., Anshumali, & Saxena, R. (2006). Metal fractionation studies in surfacial and core sediments in the Achankovil river basin in India. Environmental Monitoring and Assessment, 121, 77–102.

    Article  CAS  Google Scholar 

  • Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46(3), 449–455.

    Article  CAS  Google Scholar 

  • Riemer, D. N., & Toth, S. J. (1970). Chemical composition of five species of nymphaeaceae. American Water Works Association, 62, 195–208.

    CAS  Google Scholar 

  • Sawyer, E. W. (1986). The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico Metasedimentary Belt, superior Province, Canada. Chemical Geology, 55, 77–95.

    Article  CAS  Google Scholar 

  • Shilla, D., Qadah, D., & Kalibbala, M. (2008). Distribution of heavy metals in dissolved, particulate and biota in the Scheldt estuary, Belgium. Chemical Ecology, 24(1), 1–14.

    Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1981). Aquatic chemistry (p. 780). New York: Wiley.

    Google Scholar 

  • Tomilson, D. C., Wilson, D. J., Harris, C. R., & Jeffrey, D. W. (1980). Problem in assessment of heavy metals in estuaries and the formation of pollution index. Helgoländer Wissenschaftliche Meeresuntersuchungen, 33(1–4), 566–575.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • Vogel, A.I. (2000). A text book of quantitative inorganic analysis (pp 556–579). New York: Longmans Green.

  • Wunderlin, D. A., Diaz, M. D. P., Ame, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. D. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variation in water quality. A case study: Suquia river basin (Cordoba Argentina). Water Research, 35, 2881–2894.

    Article  CAS  Google Scholar 

  • Zhang, J. (1995). Geochemistry of trace metals from Chinese river/estuary systems: an overview. Estuarine, Coastal and Shelf Science, 41, 631–658.

    Article  CAS  Google Scholar 

  • Zhou, F., Guo, H. C., Liu, Y., & Jiang, Y. M. (2007). Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong. Marine Pollution Bulletin, 54, 745–756.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors express their sincere thanks to the Director, Institute of Minerals and Materials Technology (Council of Scientific and Industrial Research), Bhubaneswar for his kind permission to publish the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Harichandan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harichandan, R., Routroy, S., Mohanty, J.K. et al. An assessment of heavy metal contamination in soils of fresh water aquifer system and evaluation of eco-toxicity by lithogenic implications. Environ Monit Assess 185, 3503–3516 (2013). https://doi.org/10.1007/s10661-012-2806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2806-7

Keywords

Navigation